Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976643

RESUMO

Soybean cyst nematode (SCN, Heterodera glycines) is most effectively managed through planting resistant soybean cultivars, but the repeated use of the same resistance sources has led to a widespread emergence of virulent SCN populations that can overcome soybean resistance. Resistance to SCN HG type 0 (Race 3) in soybean cultivar Forrest is mediated by an epistatic interaction between the soybean resistance genes rhg1-a and Rhg4. We previously developed two SCN inbred populations by mass-selecting SCN HG type 0 (Race 3) on susceptible and resistant recombinant inbred lines, derived from a cross between Forrest and the SCN-susceptible cultivar Essex, which differ for Rhg4. To identify SCN genes potentially involved in overcoming rhg1-a/Rhg4-mediated resistance, we conducted RNA-sequencing on early parasitic juveniles of these two SCN inbred populations infecting their respective hosts, only to discover a handful of differentially expressed genes (DEGs). However, in a comparison to early parasitic juveniles of an avirulent SCN inbred population infecting a resistant host, we discovered 59 and 171 DEGs uniquely up- or down-regulated in virulent parasitic juveniles adapted on the resistant host. Interestingly, the proteins coded by these 59 DEGs included vitamin B-associated proteins (reduced folate carrier, biotin synthase, and thiamine transporter) and nematode effectors known to play roles in plant defense suppression, suggesting that virulent SCN may exert a heightened transcriptional response to cope with enhanced plant defenses and an altered nutritional status of a resistant soybean host.

2.
Genome Biol Evol ; 16(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38973368

RESUMO

This article describes a genome assembly and annotation for Bombus dahlbomii, the giant Patagonian bumble bee. DNA from a single, haploid male collected in Argentina was used for PacBio (HiFi) sequencing, and Hi-C technology was then used to map chromatin contacts. Using Juicer and manual curation, the genome was scaffolded into 18 main pseudomolecules, representing a high-quality, near chromosome-level assembly. The sequenced genome size is estimated at 265 Mb. The genome was annotated based on RNA sequencing data of another male from Argentina, and BRAKER3 produced 15,767 annotated genes. The genome and annotation show high completeness, with >95% BUSCO scores for both the genome and annotated genes (based on conserved genes from Hymenoptera). This genome provides a valuable resource for studying the biology of this iconic and endangered species, as well as for understanding the impacts of its decline and designing strategies for its preservation.


Assuntos
Espécies em Perigo de Extinção , Genoma de Inseto , Anotação de Sequência Molecular , Animais , Abelhas/genética , Masculino , Cromossomos de Insetos/genética
3.
G3 (Bethesda) ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805695

RESUMO

The bivalve subclass Pteriomorphia, which includes the economically important scallops, oysters, mussels, and ark clams, exhibits extreme ecological, morphological, and behavioral diversity. Among this diversity are five morphologically distinct eye types, making Pteriomorphia an excellent setting to explore the molecular basis for the evolution of novel traits. Of pteriomorphian bivalves, Limida is the only order lacking genomic resources, greatly limiting the potential phylogenomic analyses related to eyes and phototransduction. Here, we present a limid genome assembly, the disco clam, Ctenoides ales, which is characterized by invaginated eyes, exceptionally long tentacles, and a flashing light display. This genome assembly was constructed with PacBio long reads and Dovetail Omni-CTM proximity-ligation sequencing. The final assembly is ∼2.3Gb and over 99% of the total length is contained in 18 pseudomolecule scaffolds. We annotated 41,064 protein coding genes and report a BUSCO completeness of 91.9% for metazoa_obd10. Additionally, we report a complete and annotated mitochondrial genome, which also had been lacking from Limida. The ∼20Kb mitogenome has 12 protein coding genes, 22 tRNAs, 2 rRNA genes, and a 1,589 bp duplicated sequence containing the origin of replication. The C. ales nuclear genome size is substantially larger than other pteriomorphian genomes, mainly accounted for by transposable element sequences. We inventoried the genome for opsins, the signaling proteins that initiate phototransduction, and found that, unlike its closest eyed-relatives, the scallops, C. ales lacks duplication of the rhabdomeric Gq-protein coupled opsin that is typically used for invertebrate vision. In fact, C. ales has uncharacteristically few opsins relative to the other pteriomorphian families, all of which have unique expansions of xenopsins, a recently discovered opsin subfamily. This chromosome-level assembly, along with the mitogenome, will be valuable resources for comparative genomics and phylogenetics in bivalves and particularly for the understudied but charismatic limids.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38179990

RESUMO

A fully assembled spirochaete genome was identified as a contaminating scaffold in our red abalone (Haliotis rufescens) genome assembly. In this paper, we describe the analysis of this bacterial genome. The assembled spirochaete genome is 3.25 Mb in size with 48.5 mol% G+C content. The proteomes of 38 species were compared with the spirochaete genome and it was discovered to form an independent branch within the family Spirochaetaceae on the phylogenetic tree. The comparison of 16S rRNA sequences and average nucleotide identity scores between the spirochaete genome with known species of different families in Spirochaetia indicate that it is an unknown species. Further, the percentage of conserved proteins compared to neighbouring taxa confirm that it does not belong to a known genus within Spirochaetaceae. We propose the name Candidatus Haliotispira prima gen. nov., sp. nov. based on its taxonomic placement and origin. We also tested for the presence of this species in different species of abalone and found that it is also present in white abalone (Haliotis sorenseni). In addition, we highlight the need for better classification of taxa within the class Spirochaetia.


Assuntos
Gastrópodes , Spirochaeta , Spirochaetaceae , Humanos , Animais , Spirochaetales , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Bactérias
6.
Genome Biol Evol ; 15(3)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36792366

RESUMO

Long-read sequencing has revolutionized genome assembly, yielding highly contiguous, chromosome-level contigs. However, assemblies from some third generation long read technologies, such as Pacific Biosciences (PacBio) continuous long reads (CLR), have a high error rate. Such errors can be corrected with short reads through a process called polishing. Although best practices for polishing non-model de novo genome assemblies were recently described by the Vertebrate Genome Project (VGP) Assembly community, there is a need for a publicly available, reproducible workflow that can be easily implemented and run on a conventional high performance computing environment. Here, we describe polishCLR (https://github.com/isugifNF/polishCLR), a reproducible Nextflow workflow that implements best practices for polishing assemblies made from CLR data. PolishCLR can be initiated from several input options that extend best practices to suboptimal cases. It also provides re-entry points throughout several key processes, including identifying duplicate haplotypes in purge_dups, allowing a break for scaffolding if data are available, and throughout multiple rounds of polishing and evaluation with Arrow and FreeBayes. PolishCLR is containerized and publicly available for the greater assembly community as a tool to complete assemblies from existing, error-prone long-read data.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Fluxo de Trabalho , Haplótipos
7.
Cancers (Basel) ; 14(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35884586

RESUMO

Lipopolysaccharide (LPS) is associated with chronic intestinal inflammation and promotes intestinal cancer progression in the gut. While the interplay between LPS and intestinal immune cells has been well-characterized, little is known about LPS and the intestinal epithelium interactions. In this study, we explored the differential effects of LPS on proliferation and the transcriptome in 3D enteroids/colonoids obtained from dogs with naturally occurring gastrointestinal (GI) diseases including inflammatory bowel disease (IBD) and intestinal mast cell tumor. The study objective was to analyze the LPS-induced modulation of signaling pathways involving the intestinal epithelia and contributing to colorectal cancer development in the context of an inflammatory (IBD) or a tumor microenvironment. While LPS incubation resulted in a pro-cancer gene expression pattern and stimulated proliferation of IBD enteroids and colonoids, downregulation of several cancer-associated genes such as Gpatch4, SLC7A1, ATP13A2, and TEX45 was also observed in tumor enteroids. Genes participating in porphyrin metabolism (CP), nucleocytoplasmic transport (EEF1A1), arachidonic acid, and glutathione metabolism (GPX1) exhibited a similar pattern of altered expression between IBD enteroids and IBD colonoids following LPS stimulation. In contrast, genes involved in anion transport, transcription and translation, apoptotic processes, and regulation of adaptive immune responses showed the opposite expression patterns between IBD enteroids and colonoids following LPS treatment. In brief, the crosstalk between LPS/TLR4 signal transduction pathway and several metabolic pathways such as primary bile acid biosynthesis and secretion, peroxisome, renin-angiotensin system, glutathione metabolism, and arachidonic acid pathways may be important in driving chronic intestinal inflammation and intestinal carcinogenesis.

8.
Nucleic Acids Res ; 49(7): 4037-4053, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33744974

RESUMO

Cas9 is an RNA-guided endonuclease in the bacterial CRISPR-Cas immune system and a popular tool for genome editing. The commonly used Streptococcus pyogenes Cas9 (SpCas9) is relatively non-specific and prone to off-target genome editing. Other Cas9 orthologs and engineered variants of SpCas9 have been reported to be more specific. However, previous studies have focused on specificity of double-strand break (DSB) or indel formation, potentially overlooking alternative cleavage activities of these Cas9 variants. In this study, we employed in vitro cleavage assays of target libraries coupled with high-throughput sequencing to systematically compare cleavage activities and specificities of two natural Cas9 variants (SpCas9 and Staphylococcus aureus Cas9) and three engineered SpCas9 variants (SpCas9 HF1, HypaCas9 and HiFi Cas9). We observed that all Cas9s tested could cleave target sequences with up to five mismatches. However, the rate of cleavage of both on-target and off-target sequences varied based on target sequence and Cas9 variant. In addition, SaCas9 and engineered SpCas9 variants nick targets with multiple mismatches but have a defect in generating a DSB, while SpCas9 creates DSBs at these targets. Overall, these differences in cleavage rates and DSB formation may contribute to varied specificities observed in genome editing studies.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Staphylococcus aureus/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Edição de Genes , Especificidade por Substrato
9.
Commun Biol ; 4(1): 253, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637860

RESUMO

While it is well known that the genome can affect social behavior, recent models posit that social lifestyles can, in turn, influence genome evolution. Here, we perform the most phylogenetically comprehensive comparative analysis of 16 bee genomes to date: incorporating two published and four new carpenter bee genomes (Apidae: Xylocopinae) for a first-ever genomic comparison with a monophyletic clade containing solitary through advanced eusocial taxa. We find that eusocial lineages have undergone more gene family expansions, feature more signatures of positive selection, and have higher counts of taxonomically restricted genes than solitary and weakly social lineages. Transcriptomic data reveal that caste-affiliated genes are deeply-conserved; gene regulatory and functional elements are more closely tied to social phenotype than phylogenetic lineage; and regulatory complexity increases steadily with social complexity. Overall, our study provides robust empirical evidence that social evolution can act as a major and surprisingly consistent driver of macroevolutionary genomic change.


Assuntos
Abelhas/genética , Comportamento Animal , Evolução Molecular , Genes de Insetos , Genoma de Inseto , Comportamento Social , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Interação Gene-Ambiente , Genômica , Filogenia , Especificidade da Espécie , Transcriptoma
10.
Plant Physiol ; 184(2): 960-972, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32737073

RESUMO

Maize (Zea mays) thick aleurone1 (thk1-R) mutants form multiple aleurone layers in the endosperm and have arrested embryogenesis. Prior studies suggest that thk1 functions downstream of defective kernel1 (dek1) in a regulatory pathway that controls aleurone cell fate and other endosperm traits. The original thk1-R mutant contained an ∼2-Mb multigene deletion, which precluded identification of the causal gene. Here, ethyl methanesulfonate mutagenesis produced additional alleles, and RNA sequencing from developing endosperm was used to identify a candidate gene based on differential expression compared with the wild-type progenitor. Gene editing confirmed the gene identity by producing mutant alleles that failed to complement existing thk1 mutants and that produced multiple-aleurone homozygous phenotypes. Thk1 encodes a homolog of NEGATIVE ON TATA-LESS1, a protein that acts as a scaffold for the CARBON CATABOLITE REPRESSION4-NEGATIVE ON TATA-LESS complex. This complex is highly conserved and essential in all eukaryotes for regulating a wide array of gene expression and cellular activities. Maize also harbors a duplicate locus, thick aleurone-like1, which likely accounts for the ability of thk1 mutants to form viable cells. Transcriptomic analysis indicated that THK1 regulates activities involving cell division, signaling, differentiation, and metabolism. Identification of thk1 provides an important new component of the DEK1 regulatory system that patterns cell fate in endosperm.


Assuntos
Diferenciação Celular/genética , Endosperma/citologia , Endosperma/crescimento & desenvolvimento , Endosperma/genética , Zea mays/citologia , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Produtos Agrícolas/citologia , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Mutação , Fenótipo
11.
Bioinformatics ; 36(18): 4699-4705, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32579213

RESUMO

MOTIVATION: As the cost of sequencing decreases, the amount of data being deposited into public repositories is increasing rapidly. Public databases rely on the user to provide metadata for each submission that is prone to user error. Unfortunately, most public databases, such as non-redundant (NR), rely on user input and do not have methods for identifying errors in the provided metadata, leading to the potential for error propagation. Previous research on a small subset of the NR database analyzed misclassification based on sequence similarity. To the best of our knowledge, the amount of misclassification in the entire database has not been quantified. We propose a heuristic method to detect potentially misclassified taxonomic assignments in the NR database. We applied a curation technique and quality control to find the most probable taxonomic assignment. Our method incorporates provenance and frequency of each annotation from manually and computationally created databases and clustering information at 95% similarity. RESULTS: We found more than two million potentially taxonomically misclassified proteins in the NR database. Using simulated data, we show a high precision of 97% and a recall of 87% for detecting taxonomically misclassified proteins. The proposed approach and findings could also be applied to other databases. AVAILABILITY AND IMPLEMENTATION: Source code, dataset, documentation, Jupyter notebooks and Docker container are available at https://github.com/boalang/nr. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Metadados , Software , Bases de Dados Factuais
12.
J Biol Chem ; 295(17): 5538-5553, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32161115

RESUMO

Cas12a (Cpf1) is an RNA-guided endonuclease in the bacterial type V-A CRISPR-Cas anti-phage immune system that can be repurposed for genome editing. Cas12a can bind and cut dsDNA targets with high specificity in vivo, making it an ideal candidate for expanding the arsenal of enzymes used in precise genome editing. However, this reported high specificity contradicts Cas12a's natural role as an immune effector against rapidly evolving phages. Here, we employed high-throughput in vitro cleavage assays to determine and compare the native cleavage specificities and activities of three different natural Cas12a orthologs (FnCas12a, LbCas12a, and AsCas12a). Surprisingly, we observed pervasive sequence-specific nicking of randomized target libraries, with strong nicking of DNA sequences containing up to four mismatches in the Cas12a-targeted DNA-RNA hybrid sequences. We also found that these nicking and cleavage activities depend on mismatch type and position and vary with Cas12a ortholog and CRISPR RNA sequence. Our analysis further revealed robust nonspecific nicking of dsDNA when Cas12a is activated by binding to a target DNA. Together, our findings reveal that Cas12a has multiple nicking activities against dsDNA substrates and that these activities vary among different Cas12a orthologs.


Assuntos
Acidaminococcus/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , DNA/genética , Endodesoxirribonucleases/metabolismo , Francisella/enzimologia , Acidaminococcus/genética , Acidaminococcus/metabolismo , Proteínas de Bactérias/genética , Pareamento Incorreto de Bases , Sequência de Bases , Proteínas Associadas a CRISPR/genética , DNA/metabolismo , Clivagem do DNA , Endodesoxirribonucleases/genética , Francisella/genética , Francisella/metabolismo , Edição de Genes/métodos , Expressão Gênica
13.
Database (Oxford) ; 2019(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31680133

RESUMO

Soybean is an important worldwide crop, and farmers continue to experience significant yield loss due to the soybean cyst nematode (SCN), Heterodera glycines. This soil-borne roundworm parasite is rated the most important pathogen problem in soybean production. The infective nematodes enter into complex interactions with their host plant by inducing the development of specialized plant feeding cells that provide the parasites with nourishment. Addressing the SCN problem will require the development of genomic resources and a global collaboration of scientists to analyze and use these resources. SCNBase.org was designed as a collaborative hub for the SCN genome. All data and analyses are downloadable and can be analyzed with three integrated genomic tools: JBrowse, Feature Search and BLAST. At the time of this writing, a number of genomic and transcriptomic data sets are already available, with 43 JBrowse tracks and 21 category pages describing SCN genomic analyses on gene predictions, transcriptome and read alignments, effector-like genes, expansion and contraction of genomic repeats, orthology and synteny with related nematode species, Single Nucleotide Polymorphism (SNPs) from 15 SCN populations and novel splice sites. Standard functional gene annotations were supplemented with orthologous gene annotations using a comparison to nine related plant-parasitic nematodes, thereby enabling functional annotations for 85% of genes. These annotations led to a greater grasp on the SCN effectorome, which include over 3324 putative effector genes. By designing SCNBase as a hub, future research findings and genomic resources can easily be uploaded and made available for use by others with minimal needs for further curation. By providing these resources to nematode research community, scientists will be empowered to develop novel, more effective SCN management tools.


Assuntos
Bases de Dados de Ácidos Nucleicos , Regulação da Expressão Gênica , Genoma Helmíntico , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Rabditídios/genética , Animais , Ontologia Genética , Glycine max
14.
BMC Bioinformatics ; 20(1): 436, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31438850

RESUMO

BACKGROUND: Creating a scalable computational infrastructure to analyze the wealth of information contained in data repositories is difficult due to significant barriers in organizing, extracting and analyzing relevant data. Shared data science infrastructures like Boag is needed to efficiently process and parse data contained in large data repositories. The main features of Boag are inspired from existing languages for data intensive computing and can easily integrate data from biological data repositories. RESULTS: As a proof of concept, Boa for genomics, Boag, has been implemented to analyze RefSeq's 153,848 annotation (GFF) and assembly (FASTA) file metadata. Boag provides a massive improvement from existing solutions like Python and MongoDB, by utilizing a domain-specific language that uses Hadoop infrastructure for a smaller storage footprint that scales well and requires fewer lines of code. We execute scripts through Boag to answer questions about the genomes in RefSeq. We identify the largest and smallest genomes deposited, explore exon frequencies for assemblies after 2016, identify the most commonly used bacterial genome assembly program, and address how animal genome assemblies have improved since 2016. Boag databases provide a significant reduction in required storage of the raw data and a significant speed up in its ability to query large datasets due to automated parallelization and distribution of Hadoop infrastructure during computations. CONCLUSIONS: In order to keep pace with our ability to produce biological data, innovative methods are required. The Shared Data Science Infrastructure, Boag, provides researchers a greater access to researchers to efficiently explore data in new ways. We demonstrate the potential of a the domain specific language Boag using the RefSeq database to explore how deposited genome assemblies and annotations are changing over time. This is a small example of how Boag could be used with large biological datasets.


Assuntos
Ciência de Dados , Genômica , Disseminação de Informação , Animais , Bases de Dados Factuais , Bases de Dados Genéticas , Éxons/genética , Genoma , Análise de Sequência de DNA , Software
15.
Sci Rep ; 9(1): 1356, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718603

RESUMO

Spliced leader trans-splicing (SLTS) plays a part in the maturation of pre-mRNAs in select species across multiple phyla but is particularly prevalent in Nematoda. The role of spliced leaders (SL) within the cell is unclear and an accurate assessment of SL occurrence within an organism is possible only after extensive sequencing data are available, which is not currently the case for many nematode species. SL discovery is further complicated by an absence of SL sequences from high-throughput sequencing results due to incomplete sequencing of the 5'-ends of transcripts during RNA-seq library preparation, known as 5'-bias. Existing datasets and novel methodology were used to identify both conserved SLs and unique hypervariable SLs within Heterodera glycines, the soybean cyst nematode. In H. glycines, twenty-one distinct SL sequences were found on 2,532 unique H. glycines transcripts. The SL sequences identified on the H. glycines transcripts demonstrated a high level of promiscuity, meaning that some transcripts produced as many as nine different individual SL-transcript combinations. Most uniquely, transcriptome analysis revealed that H. glycines is the first nematode to demonstrate a higher SL trans-splicing rate using a species-specific SL over well-conserved Caenorhabditis elegans SL-like sequences.


Assuntos
Caenorhabditis elegans/genética , Nematoides/genética , Splicing de RNA/genética , RNA Líder para Processamento/genética , Animais , Sequência de Bases , Dosagem de Genes , Ontologia Genética , Genoma , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Líder para Processamento/química , Especificidade da Espécie , Trans-Splicing/genética , Transcriptoma/genética
16.
BMC Genomics ; 20(1): 119, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30732586

RESUMO

BACKGROUND: Heterodera glycines, commonly referred to as the soybean cyst nematode (SCN), is an obligatory and sedentary plant parasite that causes over a billion-dollar yield loss to soybean production annually. Although there are genetic determinants that render soybean plants resistant to certain nematode genotypes, resistant soybean cultivars are increasingly ineffective because their multi-year usage has selected for virulent H. glycines populations. The parasitic success of H. glycines relies on the comprehensive re-engineering of an infection site into a syncytium, as well as the long-term suppression of host defense to ensure syncytial viability. At the forefront of these complex molecular interactions are effectors, the proteins secreted by H. glycines into host root tissues. The mechanisms of effector acquisition, diversification, and selection need to be understood before effective control strategies can be developed, but the lack of an annotated genome has been a major roadblock. RESULTS: Here, we use PacBio long-read technology to assemble a H. glycines genome of 738 contigs into 123 Mb with annotations for 29,769 genes. The genome contains significant numbers of repeats (34%), tandem duplicates (18.7 Mb), and horizontal gene transfer events (151 genes). A large number of putative effectors (431 genes) were identified in the genome, many of which were found in transposons. CONCLUSIONS: This advance provides a glimpse into the host and parasite interplay by revealing a diversity of mechanisms that give rise to virulence genes in the soybean cyst nematode, including: tandem duplications containing over a fifth of the total gene count, virulence genes hitchhiking in transposons, and 107 horizontal gene transfers not reported in other plant parasitic nematodes thus far. Through extensive characterization of the H. glycines genome, we provide new insights into H. glycines biology and shed light onto the mystery underlying complex host-parasite interactions. This genome sequence is an important prerequisite to enable work towards generating new resistance or control measures against H. glycines.


Assuntos
Evolução Molecular , Duplicação Gênica , Genômica , Glycine max/parasitologia , Tylenchoidea/genética , Tylenchoidea/fisiologia , Animais , Genótipo , Interações Hospedeiro-Parasita , Anotação de Sequência Molecular , Doenças das Plantas/parasitologia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
17.
Genome Biol Evol ; 11(2): 431-438, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30657886

RESUMO

Abalone are one of the few marine taxa where aquaculture production dominates the global market as a result of increasing demand and declining natural stocks from overexploitation and disease. To better understand abalone biology, aid in conservation efforts for endangered abalone species, and gain insight into sustainable aquaculture, we created a draft genome of the red abalone (Haliotis rufescens). The approach to this genome draft included initial assembly using raw Illumina and PacBio sequencing data with MaSuRCA, before scaffolding using sequencing data generated from Chicago library preparations with HiRise2. This assembly approach resulted in 8,371 scaffolds and total length of 1.498 Gb; the N50 was 1.895 Mb, and the longest scaffold was 13.2 Mb. Gene models were predicted, using MAKER2, from RNA-Seq data and all related expressed sequence tags and proteins from NCBI; this resulted in 57,785 genes with an average length of 8,255 bp. In addition, single nucleotide polymorphisms were called on Illumina short-sequencing reads from five other eastern Pacific abalone species: the green (H. fulgens), pink (H. corrugata), pinto (H. kamtschatkana), black (H. cracherodii), and white (H. sorenseni) abalone. Phylogenetic relationships largely follow patterns detected by previous studies based on 1,784,991 high-quality single nucleotide polymorphisms. Among the six abalone species examined, the endangered white abalone appears to harbor the lowest levels of heterozygosity. This draft genome assembly and the sequencing data provide a foundation for genome-enabled aquaculture improvement for red abalone, and for genome-guided conservation efforts for the other five species and, in particular, for the endangered white and black abalone.


Assuntos
Gastrópodes/genética , Genoma , Animais , Anotação de Sequência Molecular , América do Norte , Oceano Pacífico , Filogenia
18.
Front Microbiol ; 10: 3064, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010110

RESUMO

Cross-talk between the gut microbiota and neurochemicals affects health and well-being of animals. However, little is known about this interaction in chickens despite their importance in food production. Probiotics and live Salmonella vaccines are microbial products commonly given orally to layer pullets to improve health and ensure food safety. This study's objective was to determine how these oral treatments, individually or in combination, would impact the gut environment of chickens. White Leghorn chicks were either non-treated (CON) or orally given probiotics (PRO), a recombinant attenuated Salmonella vaccine (RASV; VAX), or both (P+V). Birds were fed with probiotics daily beginning at 1-day-old and orally immunized with RASV at 4-days-old and boosted 2 weeks post-primary vaccination. At 5 weeks, ceca content, ceca tissues, and small intestinal scrapings (SISs) were collected from ten birds/group post-euthanasia for analyses. Catecholamine, but not serotonergic, metabolism was affected by treatments. Dopamine metabolism, indicated by L-DOPA and DOPAC levels, were increased in P+V birds versus CON and PRO birds. Based on 16S sequencing, beta diversity was more similar among vaccinated birds versus birds given probiotics, suggesting live Salmonella vaccination has a major selective pressure on microbial diversity. Abundances of Akkermansia muciniphila and Enterobacteriaceae positively correlated with levels of tyrosine and norepinephrine, respectively. Both enumeration and 16S sequencing, determined that PRO exhibited the greatest levels of Enterobacteriaceae in the ceca and feces, which was associated with greater IgA production against E. coli virulence factors as tested by ELISA. In summary, we demonstrate that using probiotics alone versus in combination with a live vaccine has major implications in catecholamine production and the microbiota of layer pullets. Additionally, unique correlations between changes in some neurochemicals and specific bacteria have been shown.

19.
BMC Genomics ; 19(1): 31, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29310588

RESUMO

BACKGROUND: The assembly and annotation of a genome is a valuable resource for a species, with applications ranging from conservation genomics to gene discovery. Genomic resource development is especially important for species in culture, such as the California Yellowtail (Seriola dorsalis), the likely candidate for the establishment of commercial offshore aquaculture production in southern California. Genomic resource development for this species will improve the understanding of sex and other phenotypic traits, and allow for rapid increases in genetic improvement for and economic gain in culture production. RESULTS: We describe the assembly and annotation of the S. dorsalis genome, and present resequencing data from 45 male and 45 female wild-caught S. dorsalis used to identify a sex-determining region and marker in this species. The genome assembly captured approximately 93% of the total 685 MB genome with an average coverage depth of 180×. Using the assembled genome, resequencing data from the 90 fish were aligned to place boundaries on the sex-determining region. Sex-specific markers were developed based on a female-specific, 61 nucleotide deletion identified in that region. We hypothesize that Estradiol 17-beta-dehydrogenase is the putative sex-determining gene and propose a plausible genetic mechanism for ZW sex determination in S. dorsalis involving a female-specific deletion of a transcription factor binding motif that may be targeted by Sox3. CONCLUSIONS: Understanding the mechanism of sex determination and development of assays to determine sex is critical both for management of wild fisheries and for development of efficient and sustainable aquaculture practices. In addition, this genome assembly for S. dorsalis will be a substantial resource for a variety of future research applications.


Assuntos
Peixes/genética , Genoma , Genômica , Processos de Determinação Sexual/genética , Animais , Sítios de Ligação , Biologia Computacional/métodos , Bases de Dados Genéticas , Peixes/metabolismo , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Genômica/métodos , Mutação INDEL , Anotação de Sequência Molecular , Motivos de Nucleotídeos , Ligação Proteica , Fatores de Transcrição
20.
mBio ; 8(4)2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28790203

RESUMO

Carbadox is a quinoxaline-di-N-oxide antibiotic fed to over 40% of young pigs in the United States that has been shown to induce phage DNA transduction in vitro; however, the effects of carbadox on swine microbiome functions are poorly understood. We investigated the in vivo longitudinal effects of carbadox on swine gut microbial gene expression (fecal metatranscriptome) and phage population dynamics (fecal dsDNA viromes). Microbial metagenome, transcriptome, and virome sequences were annotated for taxonomic inference and gene function by using FIGfam (isofunctional homolog sequences) and SEED subsystems databases. When the beta diversities of microbial FIGfam annotations were compared, the control and carbadox communities were distinct 2 days after carbadox introduction. This effect was driven by carbadox-associated lower expression of FIGfams (n = 66) related to microbial respiration, carbohydrate utilization, and RNA metabolism (q < 0.1), suggesting bacteriostatic or bactericidal effects within certain populations. Interestingly, carbadox treatment caused greater expression of FIGfams related to all stages of the phage lytic cycle 2 days following the introduction of carbadox (q ≤0.07), suggesting the carbadox-mediated induction of prophages and phage DNA recombination. These effects were diminished by 7 days of continuous carbadox in the feed, suggesting an acute impact. Additionally, the viromes included a few genes that encoded resistance to tetracycline, aminoglycoside, and beta-lactam antibiotics but these did not change in frequency over time or with treatment. The results show decreased bacterial growth and metabolism, prophage induction, and potential transduction of bacterial fitness genes in swine gut bacterial communities as a result of carbadox administration.IMPORTANCE FDA regulations on agricultural antibiotic use have focused on antibiotics that are important for human medicine. Carbadox is an antibiotic not used in humans but frequently used on U.S. pig farms. It is important to study possible side effects of carbadox use because it has been shown to promote bacterial evolution, which could indirectly impact antibiotic resistance in bacteria of clinical importance. Interestingly, the present study shows greater prophage gene expression in feces from carbadox-fed animals than in feces from nonmedicated animals 2 days after the initiation of in-feed carbadox treatment. Importantly, the phage genetic material isolated in this study contained genes that could provide resistance to antibiotics that are important in human medicine, indicating that human-relevant antibiotic resistance genes are mobile between bacteria via phages. This study highlights the collateral effects of antibiotics and demonstrates the need to consider diverse antibiotic effects whenever antibiotics are being used or new regulations are considered.


Assuntos
Anti-Infecciosos/administração & dosagem , Bacteriófagos/genética , Carbadox/administração & dosagem , Microbioma Gastrointestinal , Sus scrofa/microbiologia , Transcrição Gênica/efeitos dos fármacos , Ração Animal , Animais , Bacteriófagos/efeitos dos fármacos , Resistência Microbiana a Medicamentos , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Perfilação da Expressão Gênica , Metagenoma/efeitos dos fármacos , Prófagos/genética , Sus scrofa/virologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...