Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 10: 983899, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340033

RESUMO

Abdominal obesity associates with cardiometabolic disease and an accumulation of lipids in the visceral adipose depot, whereas lipid accumulation in the subcutaneous depot is more benign. We aimed to further investigate whether the adipogenic properties where cell-intrinsic, or dependent on a depot-specific or obesity-produced microenvironment. We obtained visceral and subcutaneous biopsies from non-obese women (n = 14) or women living with morbid obesity (n = 14) and isolated adipose stem and progenitor cells (ASPCs) from the stromal vascular fraction of non-obese (n = 13) and obese (n = 13). Following in vitro differentiation into mature adipocytes, we observed a contrasting pattern with a lower gene expression of adipogenic markers and a higher gene expression of immunogenic markers in the visceral compared to the subcutaneous adipocytes. We identified the immunogenic factor BST2 as a marker for visceral ASPCs. The effect of obesity and insulin resistance on adipogenic and immunogenic markers in the in vitro differentiated cells was minor. In contrast, differentiation with exogenous Tumor necrosis factor resulted in increased immunogenic signatures, including increased expression of BST2, and decreased adipogenic signatures in cells from both depots. Our data, from 26 women, underscore the intrinsic differences between human visceral and subcutaneous adipose stem and progenitor cells, suggest that dysregulation of adipocytes in obesity mainly occurs at a post-progenitor stage, and highlight an inflammatory microenvironment as a major constraint of human adipogenesis.

2.
Cell Metab ; 30(5): 963-975.e7, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31668873

RESUMO

Adipokines secreted from white adipose tissue play a role in metabolic crosstalk and homeostasis, whereas the brown adipose secretome is less explored. We performed high-sensitivity mass-spectrometry-based proteomics on the cell media of human adipocytes derived from the supraclavicular brown adipose and from the subcutaneous white adipose depots of adult humans. We identified 471 potentially secreted proteins covering interesting categories such as hormones, growth factors, extracellular matrix proteins, and proteins of the complement system, which were differentially regulated between brown and white adipocytes. A total of 101 proteins were exclusively quantified in brown adipocytes, and among these was ependymin-related protein 1 (EPDR1). EPDR1 was detected in human plasma, and functional studies suggested a role for EPDR1 in thermogenic determination during adipogenesis. In conclusion, we report substantial differences between the secretomes of brown and white human adipocytes and identify novel candidate batokines that can be important regulators of human metabolism.


Assuntos
Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Tecido Adiposo Marrom/metabolismo , Proteínas de Neoplasias/sangue , Proteômica/métodos , Adulto , Idoso , Animais , Estudos de Coortes , Feminino , Técnicas de Silenciamento de Genes , Bócio/sangue , Bócio/patologia , Bócio/cirurgia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Proteínas do Tecido Nervoso , Via Secretória/genética , Transdução de Sinais/genética , Transfecção , Adulto Jovem
3.
Toxicon ; 88: 77-87, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24951872

RESUMO

Okadaic acid (OA) is a polyether fatty acid produced by marine dinoflagellates and the causative agent of diarrhetic shellfish poisoning. The effect of OA on apical endocytosis in the small intestine was studied in organ cultured porcine mucosal explants. Within 0.5-1 h of culture, the toxin caused hyper protein phosphorylation, but no detectable loss of cell polarity or cytoskeletal integrity of the enterocytes. Using a fluorescent membrane marker, FM dye, endocytosis from the brush border was affected by the toxin. Although constitutive uptake into subapical terminal web-localized early endosomes (TWEEs) occurred unimpeded in the presence of OA, FM condensed in larger subapical structures by 1 h, implying a perturbed endosomal trafficking/maturation. The fluorescent lysosomotropic agent Lysotracker revealed induction of large lysosomal structures by OA. Endocytosis from the brush border was studied at the electron microscopic level using the membrane-impermeable marker Ruthenium Red (RR). Like FM dye, RR was taken up into TWEEs and multivesicular bodies (MVBs). However, OA induced the formation of a large number of lamellar bodies (LBs), a type of lysosome-related organelles. LBs are the hallmark of phospholipidosis, a pathological condition characterized by lysosomal phospholipid accumulation. Phospholipidosis is observed in acquired lysosomal storage diseases and is induced by a large number of cationic amphiphilic drugs. Unlike the latter, however, OA does not act by accumulating in acidic organelles, implying a different toxic mechanism of action. We propose that rapid induction of LBs, an indicator of phospholipidosis, should be included in the future toxicity profile of OA.


Assuntos
Enterócitos/efeitos dos fármacos , Ácido Okadáico/toxicidade , Organelas/efeitos dos fármacos , Animais , Células Cultivadas , Citoesqueleto/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Enterócitos/ultraestrutura , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/ultraestrutura , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/ultraestrutura , Fosfolipídeos/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...