Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Environ Contam Toxicol ; 43(1): 1-10, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12045868

RESUMO

Numerical sediment quality targets (SQTs) for the protection of sediment-dwelling organisms have been established for the St. Louis River Area of Concern (AOC), 1 of 42 current AOCs in the Great Lakes basin. The two types of SQTs were established primarily from consensus-based sediment quality guidelines. Level I SQTs are intended to identify contaminant concentrations below which harmful effects on sediment-dwelling organisms are unlikely to be observed. Level II SQTs are intended to identify contaminant concentrations above which harmful effects on sediment-dwelling organisms are likely to be observed. The predictive ability of the numerical SQTs was evaluated using the matching sediment chemistry and toxicity data set for the St. Louis River AOC. This evaluation involved determination of the incidence of toxicity to amphipods ( Hyalella azteca) and midges (Chironomus tentans) within five ranges of Level II SQT quotients (i.e., mean probable effect concentration quotients [PEC-Qs]). The incidence of toxicity was determined based on the results of 10-day toxicity tests with amphipods (endpoints: survival and growth) and 10-day toxicity tests with midges (endpoints: survival and growth). For both toxicity tests, the incidence of toxicity increased as the mean PEC-Q ranges increased. The incidence of toxicity observed in these tests was also compared to that for other geographic areas in the Great Lakes region and in North America for 10- to 14-day amphipod (H. azteca) and 10- to 14-day midge (C. tentans or C. riparius) toxicity tests. In general, the predictive ability of the mean PEC-Qs was similar across geographic areas. The results of these predictive ability evaluations indicate that collectively the mean PEC-Qs provide a reliable basis for classifying sediments as toxic or not toxic in the St. Louis River AOC, in the larger geographic areas of the Great Lakes, and elsewhere in North America.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Poluentes Químicos da Água/toxicidade , Animais , Crustáceos , Dípteros , Great Lakes Region , Dinâmica Populacional , Valor Preditivo dos Testes , Testes de Toxicidade
2.
Environ Toxicol Chem ; 20(1): 46-60, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11351415

RESUMO

Acute sediment toxicity tests have become important in regulatory, monitoring, and scientific programs, partly because it has been assumed that they are indicative of ecological damage to benthic infaunal resources. Data from tests of sediment toxicity and measures of benthic community structure were examined from > 1,400 saltwater samples to determine the relationships between acute toxicity and changes in the abundance and diversity of infauna resources. Data were compiled from studies conducted along portions of the Atlantic, Gulf of Mexico, and Pacific coasts of the United States. There was considerable variability among the data sets in the relationships between laboratory results and benthic measures. However, in 92% of the samples classified as toxic, at least one measure of benthic diversity or abundance was < 50% of the average reference value. In 67% of these samples, at least one measure of benthic infauna abundance or diversity was < 10% of average reference conditions. No amphipods were found in 39% of samples that were classified as toxic, whereas amphipods were absent from 28% of the nontoxic samples. In many survey areas, the abundance of crustaceans (notably the amphipods) decreased in the infauna as amphipod survival decreased in the laboratory tests. There appeared to be a break point in the data indicating that, generally, amphipod abundance in the field was lowest when survival in the laboratory tests dropped below 50% of controls. Based on the weight of evidence from all the data analyses, we conclude that ecologically relevant losses in the abundance and diversity of the benthic infauna frequently corresponded with reduced amphipod survival in the laboratory tests.


Assuntos
Invertebrados/fisiologia , Biologia Marinha , Poluentes Químicos da Água/toxicidade , Animais , América do Norte , População , Estados Unidos , United States Environmental Protection Agency , Poluição da Água/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...