Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 33(8): e2923, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37788067

RESUMO

Assessing the effects of industrial development on wildlife is a key objective of managers and conservation practitioners. However, wildlife responses are often only investigated with respect to the footprint of infrastructure, even though human activity can strongly mediate development impacts. In Arctic Alaska, there is substantial interest in expanding energy development, raising concerns about the potential effects on barren-ground caribou (Rangifer tarandus granti). While caribou generally avoid industrial infrastructure, little is known about the role of human activity in moderating their responses, and whether managing activity levels could minimize development effects. To address this uncertainty, we examined the influence of traffic volume on caribou summer space use and road crossings in the Central Arctic Herd within the Kuparuk and Milne Point oil fields on the North Slope of Alaska. We first modeled spatiotemporal variation in hourly traffic volumes across the road system from traffic counter data using gradient-boosted regression trees. We then used generalized additive models to estimate nonlinear step selection functions and road-crossing probabilities from collared female caribou during the post-calving and insect harassment seasons, when they primarily interact with roads. Step selection analyses revealed that caribou selected areas further from roads (~1-3 km) during the post-calving and mosquito seasons and selected areas with lower traffic volumes during all seasons, with selection probabilities peaking when traffic was <5 vehicles/h. Using road-crossing models, we found that caribou were less likely to cross roads during the insect seasons as traffic increased, but that response dissipated as insect harassment became more severe. Past studies suggested that caribou exhibit behavioral responses when traffic exceeds 15 vehicles/h, but our results demonstrate behavioral responses at much lower traffic levels. Our results illustrate that vehicle activity mediates caribou responses to road infrastructure, information that can be used in future land-use planning to minimize the behavioral responses of caribou to industrial development in sensitive Arctic landscapes.


Assuntos
Rena , Animais , Humanos , Rena/fisiologia , Regiões Árticas , Insetos/fisiologia , Estações do Ano , Alaska , Animais Selvagens
2.
Glob Chang Biol ; 27(19): 4546-4563, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33993595

RESUMO

Annual variation in phenology can have profound effects on the behavior of animals. As climate change advances spring phenology in ecosystems around the globe, it is becoming increasingly important to understand how animals respond to variation in the timing of seasonal events and how their responses may shift in the future. We investigated the influence of spring phenology on the behavior of migratory, barren-ground caribou (Rangifer tarandus), a species that has evolved to cope with short Arctic summers. Specifically, we examined the effect of spring snow melt and vegetation growth on the current and potential future space-use patterns of the Porcupine Caribou Herd (PCH), which exhibits large, inter-annual shifts in their calving and post-calving distributions across the U.S.-Canadian border. We quantified PCH selection for snow melt and vegetation phenology using machine learning models, determined how selection resulted in annual shifts in space-use, and then projected future distributions based on climate-driven phenology models. Caribou exhibited strong, scale-dependent selection for both snow melt and vegetation growth. During the calving season, caribou selected areas at finer scales where the snow had melted and vegetation was greening, but within broader landscapes that were still brown or snow covered. During the post-calving season, they selected vegetation with intermediate biomass expected to have high forage quality. Annual variation in spring phenology predicted major shifts in PCH space-use. In years with early spring phenology, PCH predominately used habitat in Alaska, while in years with late phenology, they spent more time in Yukon. Future climate conditions were projected to advance spring phenology, shifting PCH calving and post-calving distributions further west into Alaska. Our results demonstrate that caribou selection for habitat in specific phenological stages drive dramatic shifts in annual space-use patterns, and will likely affect future distributions, underscoring the importance of maintaining sufficient suitable habitat to allow for behavioral plasticity.


Assuntos
Ecossistema , Rena , Animais , Canadá , Estações do Ano , Neve
3.
Ecol Evol ; 10(1): 104-118, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31993115

RESUMO

Defining boundaries of species' habitat across broad spatial scales is often necessary for management decisions, and yet challenging for species that demonstrate differential variation in seasonal habitat use. Spatially explicit indices that incorporate temporal shifts in selection can help overcome such challenges, especially for species of high conservation concern. Greater sage-grouse Centrocercus urophasianus (hereafter, sage-grouse), a sagebrush obligate species inhabiting the American West, represents an important case study because sage-grouse exhibit seasonal habitat patterns, populations are declining in most portions of their range and are central to contemporary national land use policies. Here, we modeled spatiotemporal selection patterns for telemetered sage-grouse across multiple study sites (1,084 sage-grouse; 30,690 locations) in the Great Basin. We developed broad-scale spatially explicit habitat indices that elucidated space use patterns (spring, summer/fall, and winter) and accounted for regional climatic variation using previously published hydrographic boundaries. We then evaluated differences in selection/avoidance of each habitat characteristic between seasons and hydrographic regions. Most notably, sage-grouse consistently selected areas dominated by sagebrush with few or no conifers but varied in type of sagebrush selected by season and region. Spatiotemporal variation was most apparent based on availability of water resources and herbaceous cover, where sage-grouse strongly selected upland natural springs in xeric regions but selected larger wet meadows in mesic regions. Additionally, during the breeding period in spring, herbaceous cover was selected strongly in the mesic regions. Lastly, we expanded upon an existing joint-index framework by combining seasonal habitat indices with a probabilistic index of sage-grouse abundance and space use to produce habitat maps useful for sage-grouse management. These products can serve as conservation planning tools that help predict expected benefits of restoration activities, while highlighting areas most critical to sustaining sage-grouse populations. Our joint-index framework can be applied to other species that exhibit seasonal shifts in habitat requirements to help better guide conservation actions.

4.
PLoS One ; 12(3): e0174347, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28333995

RESUMO

Sagebrush (Artemisia spp.) obligate wildlife species such as the imperiled greater sage-grouse (Centrocercus urophasianus) face numerous threats including altered ecosystem processes that have led to conifer expansion into shrub-steppe. Conifer removal is accelerating despite a lack of empirical evidence on grouse population response. Using a before-after-control-impact design at the landscape scale, we evaluated effects of conifer removal on two important demographic parameters, annual survival of females and nest survival, by monitoring 219 female sage-grouse and 225 nests in the northern Great Basin from 2010 to 2014. Estimates from the best treatment models showed positive trends in the treatment area relative to the control area resulting in an increase of 6.6% annual female survival and 18.8% nest survival relative to the control area by 2014. Using stochastic simulations of our estimates and published demographics, we estimated a 25% increase in the population growth rate in the treatment area relative to the control area. This is the first study to link sage-grouse demographics with conifer removal and supports recommendations to actively manage conifer expansion for sage-grouse conservation. Sage-grouse have become a primary catalyst for conservation funding to address conifer expansion in the West, and these findings have important implications for other ecosystem services being generated on the wings of species conservation.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Galliformes/fisiologia , Traqueófitas , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...