Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 334(6053): 255-8, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21998396

RESUMO

The mammalian intestine is home to ~100 trillion bacteria that perform important metabolic functions for their hosts. The proximity of vast numbers of bacteria to host intestinal tissues raises the question of how symbiotic host-bacterial relationships are maintained without eliciting potentially harmful immune responses. Here, we show that RegIIIγ, a secreted antibacterial lectin, is essential for maintaining a ~50-micrometer zone that physically separates the microbiota from the small intestinal epithelial surface. Loss of host-bacterial segregation in RegIIIγ(-/-) mice was coupled to increased bacterial colonization of the intestinal epithelial surface and enhanced activation of intestinal adaptive immune responses by the microbiota. Together, our findings reveal that RegIIIγ is a fundamental immune mechanism that promotes host-bacterial mutualism by regulating the spatial relationships between microbiota and host.


Assuntos
Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/fisiologia , Mucosa Intestinal/microbiologia , Intestino Delgado/microbiologia , Metagenoma , Proteínas/metabolismo , Imunidade Adaptativa , Animais , Antibacterianos/farmacologia , Carga Bacteriana , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Positivas/imunologia , Homeostase , Imunoglobulina A/análise , Mucosa Intestinal/imunologia , Intestino Delgado/imunologia , Lectinas Tipo C/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Proteínas Associadas a Pancreatite , Simbiose , Linfócitos T Auxiliares-Indutores/imunologia
2.
Proc Natl Acad Sci U S A ; 108(21): 8743-8, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21555560

RESUMO

The mammalian gastrointestinal tract harbors thousands of bacterial species that include symbionts as well as potential pathogens. The immune responses that limit access of these bacteria to underlying tissue remain poorly defined. Here we show that γδ intraepithelial lymphocytes (γδ IEL) of the small intestine produce innate antimicrobial factors in response to resident bacterial "pathobionts" that penetrate the intestinal epithelium. γδ IEL activation was dependent on epithelial cell-intrinsic MyD88, suggesting that epithelial cells supply microbe-dependent cues to γδ IEL. Finally, γδ T cells protect against invasion of intestinal tissues by resident bacteria specifically during the first few hours after bacterial encounter, indicating that γδ IEL occupy a unique temporal niche among intestinal immune defenses. Thus, γδ IEL detect the presence of invading bacteria through cross-talk with neighboring epithelial cells and are an essential component of the hierarchy of immune defenses that maintain homeostasis with the intestinal microbiota.


Assuntos
Homeostase/imunologia , Interações Hospedeiro-Patógeno/imunologia , Mucosa Intestinal/imunologia , Linfócitos/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/fisiologia , Animais , Bactérias/imunologia , Comunicação Celular/imunologia , Células Epiteliais , Imunidade Inata , Metagenoma/imunologia , Camundongos , Camundongos Knockout
3.
J Immunol ; 184(12): 6782-9, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20483765

RESUMO

Intestinal bacteria drive the formation of lymphoid tissues, and in rabbit, bacteria also promote development of the preimmune Ab repertoire and positive selection of B cells in GALT. Previous studies indicated that Bacillus subtilis promotes B cell follicle formation in GALT, and we investigated the mechanism by which B. subtilis stimulates B cells. We found that spores of B. subtilis and other Bacillus species, including Bacillus anthracis, bound rabbit IgM through an unconventional, superantigen-like binding site, and in vivo, surface molecules of B. anthracis spores promoted GALT development. Our study provides direct evidence that B cell development in GALT may be driven by superantigen-like molecules, and furthermore, that bacterial spores modulate host immunity.


Assuntos
Antígenos de Bactérias/imunologia , Linfócitos B/citologia , Diferenciação Celular/imunologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Tecido Linfoide/citologia , Animais , Anticorpos Antibacterianos/imunologia , Especificidade de Anticorpos , Linfócitos B/imunologia , Western Blotting , Separação Celular , Citometria de Fluxo , Trato Gastrointestinal/citologia , Tecido Linfoide/imunologia , Coelhos , Esporos Bacterianos/imunologia , Superantígenos/imunologia
4.
J Bacteriol ; 191(24): 7587-96, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19837802

RESUMO

The Bacillus anthracis spore is the causative agent of the disease anthrax. The outermost structure of the B. anthracis spore, the exosporium, is a shell composed of approximately 20 proteins. The function of the exosporium remains poorly understood and is an area of active investigation. In this study, we analyzed the previously identified but uncharacterized exosporium protein ExsK. We found that, in contrast to other exosporium proteins, ExsK is present in at least two distinct locations, i.e., the spore surface as well as a more interior location underneath the exosporium. In spores that lack the exosporium basal layer protein ExsFA/BxpB, ExsK fails to encircle the spore and instead is present at only one spore pole, indicating that ExsK assembly to the spore is partially dependent on ExsFA/BxpB. In spores lacking the exosporium surface protein BclA, ExsK fails to mature into high-molecular-mass species observed in wild-type spores. These data suggest that the assembly and maturation of ExsK within the exosporium are dependent on ExsFA/BxpB and BclA. We also found that ExsK is not required for virulence in murine and guinea pig models but that it does inhibit germination. Based on these data, we propose a revised model of exosporium maturation and assembly and suggest a novel role for the exosporium in germination.


Assuntos
Bacillus anthracis/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Esporos/crescimento & desenvolvimento , Animais , Antraz/microbiologia , Bacillus anthracis/química , Proteínas de Bactérias/genética , Feminino , Cobaias , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Esporos/química , Transativadores/genética , Transativadores/metabolismo , Virulência
5.
J Virol ; 78(24): 13600-12, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15564471

RESUMO

Gene 1 of the coronavirus associated with severe acute respiratory syndrome (SARS) encodes replicase polyproteins that are predicted to be processed into 16 nonstructural proteins (nsps 1 to 16) by two viral proteases, a papain-like protease (PLpro) and a 3C-like protease (3CLpro). Here, we identify SARS coronavirus amino-terminal replicase products nsp1, nsp2, and nsp3 and describe trans-cleavage assays that characterize the protease activity required to generate these products. We generated polyclonal antisera to glutathione S-transferase-replicase fusion proteins and used the antisera to detect replicase intermediates and products in pulse-chase experiments. We found that nsp1 (p20) is rapidly processed from the replicase polyprotein. In contrast, processing at the nsp2/3 site is less efficient, since a approximately 300-kDa intermediate (NSP2-3) is detected, but ultimately nsp2 (p71) and nsp3 (p213) are generated. We found that SARS coronavirus replicase products can be detected by 4 h postinfection in the cytoplasm of infected cells and that nsps 1 to 3 colocalize with newly synthesized viral RNA in punctate, perinuclear sites consistent with their predicted role in viral RNA synthesis. To determine if PLpro is responsible for processing these products, we cloned and expressed the PLpro domain and the predicted substrates and established PLpro trans-cleavage assays. We found that the PLpro domain is sufficient for processing the predicted nsp1/2 and nsp2/3 sites. Interestingly, expression of an extended region of PLpro that includes the downstream hydrophobic domain was required for processing at the predicted nsp3/4 site. We found that the hydrophobic domain is inserted into membranes and that the lumenal domain is glycosylated at asparagine residues 2249 and 2252. Thus, the hydrophobic domain may anchor the replication complex to intracellular membranes. These studies revealed that PLpro can cleave in trans at the three predicted cleavage sites and that it requires membrane association to process the nsp3/4 cleavage site.


Assuntos
Papaína/metabolismo , Poliproteínas/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Proteases Semelhantes à Papaína de Coronavírus , Humanos , Dados de Sequência Molecular , Mutação , Papaína/química , Papaína/genética , Processamento de Proteína Pós-Traducional , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...