Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 3(3): 101524, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35810413

RESUMO

This protocol describes how to characterize α-Smooth muscle actin (αSMA) spatiotemporal expression during mouse small intestinal development. Specific tissue fixation preserves αSMA arrangement in low αSMA expressing cells that are conventionally undetectable under αSMA immunofluorescent stain due to inappropriate fixative-caused artificial actin depolymerization. Parallel analysis of αSMA carbonylation allows estimation of oxidative damage in gut muscular lineage. This approach improves the molecular specificity offered by commercialized kits that estimate total protein carbonyl level in cell lysates without protein specificity. For complete details on the use and execution of this protocol, please refer to Hu et al. (2021).


Assuntos
Actinas , Músculo Liso , Actinas/metabolismo , Animais , Animais Recém-Nascidos , Fixadores/metabolismo , Intestinos , Camundongos , Músculo Liso/metabolismo , Estresse Oxidativo
2.
Cell Rep ; 37(8): 110030, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34818545

RESUMO

Intestinal lacteals are essential lymphatic channels for absorption and transport of dietary lipids and drive the pathogenesis of debilitating metabolic diseases. However, organ-specific mechanisms linking lymphatic dysfunction to disease etiology remain largely unknown. In this study, we uncover an intestinal lymphatic program that is linked to the left-right (LR) asymmetric transcription factor Pitx2. We show that deletion of the asymmetric Pitx2 enhancer ASE alters normal lacteal development through the lacteal-associated contractile smooth muscle lineage. ASE deletion leads to abnormal muscle morphogenesis induced by oxidative stress, resulting in impaired lacteal extension and defective lymphatic system-dependent lipid transport. Surprisingly, activation of lymphatic system-independent trafficking directs dietary lipids from the gut directly to the liver, causing diet-induced fatty liver disease. Our study reveals the molecular mechanism linking gut lymphatic function to the earliest symmetry-breaking Pitx2 and highlights the important relationship between intestinal lymphangiogenesis and the gut-liver axis.


Assuntos
Gorduras na Dieta/metabolismo , Proteínas de Homeodomínio/metabolismo , Intestinos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Transporte Biológico , Duodeno/metabolismo , Feminino , Proteínas de Homeodomínio/genética , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Linfangiogênese/fisiologia , Vasos Linfáticos/metabolismo , Masculino , Camundongos , Transdução de Sinais , Fatores de Transcrição/genética , Proteína Homeobox PITX2
3.
Cells ; 9(10)2020 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-33080949

RESUMO

The endoplasmic reticulum (ER) has emerged as a source of hydrogen peroxide (H2O2) and a hub for peroxide-based signaling events. Here we outline cellular sources of ER-localized peroxide, including sources within and near the ER. Focusing on three ER-localized proteins-the molecular chaperone BiP, the transmembrane stress-sensor IRE1, and the calcium pump SERCA2-we discuss how post-translational modification of protein cysteines by H2O2 can alter ER activities. We review how changed activities for these three proteins upon oxidation can modulate signaling events, and also how cysteine oxidation can serve to limit the cellular damage that is most often associated with elevated peroxide levels.


Assuntos
Retículo Endoplasmático/metabolismo , Peróxido de Hidrogênio/metabolismo , Transdução de Sinais , Animais , Humanos , Modelos Biológicos , Chaperonas Moleculares/metabolismo
4.
J Biol Chem ; 295(2): 552-569, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31806703

RESUMO

Cells employ a vast network of regulatory pathways to manage intracellular levels of reactive oxygen species (ROS). An effectual means used by cells to control these regulatory systems are sulfur-based redox switches, which consist of protein cysteine or methionine residues that become transiently oxidized when intracellular ROS levels increase. Here, we describe a methionine-based oxidation event involving the yeast cytoplasmic Hsp70 co-chaperone Fes1. We show that Fes1 undergoes reversible methionine oxidation during excessively-oxidizing cellular conditions, and we map the site of this oxidation to a cluster of three methionine residues in the Fes1 core domain. Making use of recombinant proteins and a variety of in vitro assays, we establish that oxidation inhibits Fes1 activity and, correspondingly, alters Hsp70 activity. Moreover, we demonstrate in vitro and in cells that Fes1 oxidation is reversible and is regulated by the cytoplasmic methionine sulfoxide reductase Mxr1 (MsrA) and a previously unidentified cytoplasmic pool of the reductase Mxr2 (MsrB). We speculate that inactivation of Fes1 activity during excessively-oxidizing conditions may help maintain protein-folding homeostasis in a suboptimal cellular folding environment. The characterization of Fes1 oxidation during cellular stress provides a new perspective as to how the activities of the cytoplasmic Hsp70 chaperones may be attuned by fluctuations in cellular ROS levels and provides further insight into how cells use methionine-based redox switches to sense and respond to oxidative stress.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metionina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Metionina Sulfóxido Redutases/metabolismo , Estresse Oxidativo , Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Espécies Reativas de Oxigênio/metabolismo
5.
Chem Res Toxicol ; 32(3): 342-344, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30721036

RESUMO

The concept that reactive oxygen species (ROS) are primarily toxic, mitochondria-generated molecules has persisted for decades. Here we highlight the emerging complexity for ROS-based events, emphasizing the evolving importance of the endoplasmic reticulum as a source and platform for redox signaling.


Assuntos
Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Oxirredução
6.
Biochemistry ; 57(7): 1073-1086, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29300467

RESUMO

The ATPase domain of members of the 70 kDa heat shock protein (Hsp70) family shows a high degree of sequence, structural, and functional homology across species. A broadly conserved residue within the Hsp70 ATPase domain that captured our attention is an unpaired cysteine, positioned proximal to the site of nucleotide binding. Prior studies of several Hsp70 family members show this cysteine is not required for Hsp70 ATPase activity, yet select amino acid replacements of the cysteine can dramatically alter ATP hydrolysis. Moreover, post-translational modification of the cysteine has been reported to limit ATP hydrolysis for several Hsp70s. To better understand the underlying mechanism for how perturbation of this noncatalytic residue modulates Hsp70 function, we determined the structure for a cysteine-to-tryptophan mutation in the constitutively expressed, mammalian Hsp70 family member Hsc70. Our work reveals that the steric hindrance produced by a cysteine-to-tryptophan mutation disrupts the hydrogen-bond network within the active site, resulting in a loss of proper catalytic magnesium coordination. We propose that a similarly altered active site is likely observed upon post-translational oxidation. We speculate that the subtle changes we detect in the hydrogen-bonding network may relate to the previously reported observation that cysteine oxidation can influence Hsp70 interdomain communication.


Assuntos
Adenosina Trifosfatases/genética , Cisteína/genética , Proteínas de Choque Térmico HSC70/genética , Mutação Puntual , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico HSC70/metabolismo , Humanos , Ligação de Hidrogênio , Hidrólise , Modelos Moleculares , Alinhamento de Sequência
7.
Trends Biochem Sci ; 43(1): 32-43, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29153511

RESUMO

The reversal of thiol oxidation in proteins within the endoplasmic reticulum (ER) is crucial for protein folding, degradation, chaperone function, and the ER stress response. Our understanding of this process is generally poor but progress has been made. Enzymes performing the initial reduction of client proteins, as well as the ultimate electron donor in the pathway, have been identified. Most recently, a role for the cytosol in ER protein reduction has been revealed. Nevertheless, how reducing equivalents are transferred from the cytosol to the ER lumen remains an open question. We review here why proteins are reduced in the ER, discuss recent data on catalysis of steps in the pathway, and consider the implications for redox homeostasis within the early secretory pathway.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas/química , Proteínas/metabolismo , Humanos , Oxirredução , Dobramento de Proteína
8.
Elife ; 62017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28257000

RESUMO

Unfavorable redox conditions in the endoplasmic reticulum (ER) can decrease the capacity for protein secretion, altering vital cell functions. While systems to manage reductive stress are well-established, how cells cope with an overly oxidizing ER remains largely undefined. In previous work (Wang et al., 2014), we demonstrated that the chaperone BiP is a sensor of overly oxidizing ER conditions. We showed that modification of a conserved BiP cysteine during stress beneficially alters BiP chaperone activity to cope with suboptimal folding conditions. How this cysteine is reduced to reestablish 'normal' BiP activity post-oxidative stress has remained unknown. Here we demonstrate that BiP's nucleotide exchange factor - Sil1 - can reverse BiP cysteine oxidation. This previously unexpected reductant capacity for yeast Sil1 has potential implications for the human ataxia Marinesco-Sjögren syndrome, where it is interesting to speculate that a disruption in ER redox-signaling (due to genetic defects in SIL1) may influence disease pathology.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cisteína/metabolismo , Oxirredução , Estresse Oxidativo , Estresse Fisiológico
9.
J Mol Biol ; 428(20): 4168-4184, 2016 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-27543005

RESUMO

Among the amino acids, cysteine stands apart based on its highly reactive sulfur group. In general, cysteine is underrepresented in proteins. Yet, when present, the features of cysteine often afford unique function. We have shown previously that a cysteine within the ATPase domain of yeast BiP (Kar2) serves as a sensor of the endoplasmic reticulum (ER) redox environment [1, 2]. Under conditions of increased oxidant (oxidative stress), this cysteine becomes oxidized, changing Kar2 from an ATP-dependent foldase to an ATP-independent holdase. We were struck by the high degree of conservation for this cysteine between BiP orthologs, and we sought to determine how cysteine substitution impacts Kar2 function. We observed that no single amino acid replacement is capable of recreating the range of functions that can be achieved by wild-type Kar2 with its cysteine in either unmodified or oxidized states. However, we were able to generate mutants that could selectively replicate the distinct activities exhibited by either unmodified or oxidized Kar2. We found that the ATPase activity displayed by unmodified Kar2 is fully maintained when Cys63 is replaced with Ala or Val. Conversely, we demonstrate that several amino acid substitutions (including His, Phe, Pro, Trp, and Tyr) support an enhanced viability during oxidative stress associated with oxidized Kar2, although these alleles are compromised as an ATPase. We reveal that the range of activity demonstrated by wild-type Kar2 can be replicated by co-expression of Kar2 mutants that mimic either the unmodified or oxidized Kar2 state, allowing for growth during standard and oxidative stress conditions.


Assuntos
Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Cisteína/genética , Cisteína/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Saccharomyces cerevisiae/enzimologia , Substituição de Aminoácidos , Sequência Conservada , Mutagênese Sítio-Dirigida , Oxirredução , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
10.
J Biol Chem ; 291(14): 7541-57, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26865632

RESUMO

Redox fluctuations within cells can be detrimental to cell function. To gain insight into how cells normally buffer against redox changes to maintain cell function, we have focused on elucidating the signaling pathways that serve to sense and respond to oxidative redox stress within the endoplasmic reticulum (ER) using yeast as a model system. Previously, we have shown that a cysteine in the molecular chaperone BiP, a Hsp70 molecular chaperone within the ER, is susceptible to oxidation by peroxide during ER-derived oxidative stress, forming a sulfenic acid (-SOH) moiety. Here, we demonstrate that this same conserved BiP cysteine is susceptible also to glutathione modification (-SSG). Glutathionylated BiP is detected both as a consequence of enhanced levels of cellular peroxide and also as a by-product of increased levels of oxidized glutathione (GSSG). Similar to sulfenylation, we observe glutathionylation decouples BiP ATPase and peptide binding activities, turning BiP from an ATP-dependent foldase into an ATP-independent holdase. We show glutathionylation enhances cell proliferation during oxidative stress, which we suggest relates to modified BiP's increased ability to limit polypeptide aggregation. We propose the susceptibility of BiP to modification with glutathione may serve also to prevent irreversible oxidation of BiP by peroxide.


Assuntos
Proteínas Fúngicas/metabolismo , Glutationa/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Estresse Oxidativo/fisiologia , Saccharomyces cerevisiae/metabolismo , Sobrevivência Celular , Cisteína/genética , Cisteína/metabolismo , Proteínas Fúngicas/genética , Glutationa/genética , Proteínas de Choque Térmico HSP70/genética , Oxirredução , Peróxidos/metabolismo , Saccharomyces cerevisiae/genética
11.
Elife ; 3: e03496, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25053742

RESUMO

Oxidative protein folding in the endoplasmic reticulum (ER) has emerged as a potentially significant source of cellular reactive oxygen species (ROS). Recent studies suggest that levels of ROS generated as a byproduct of oxidative folding rival those produced by mitochondrial respiration. Mechanisms that protect cells against oxidant accumulation within the ER have begun to be elucidated yet many questions still remain regarding how cells prevent oxidant-induced damage from ER folding events. Here we report a new role for a central well-characterized player in ER homeostasis as a direct sensor of ER redox imbalance. Specifically we show that a conserved cysteine in the lumenal chaperone BiP is susceptible to oxidation by peroxide, and we demonstrate that oxidation of this conserved cysteine disrupts BiP's ATPase cycle. We propose that alteration of BiP activity upon oxidation helps cells cope with disruption to oxidative folding within the ER during oxidative stress.


Assuntos
Adenosina Trifosfatases/metabolismo , Estresse do Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico HSP70/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Cisteína/química , Cisteína/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Genes Reporter , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Homeostase , Peróxido de Hidrogênio/farmacologia , Óperon Lac , Modelos Moleculares , Oxirredução , Dobramento de Proteína , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Transdução de Sinais
12.
J Cell Biol ; 196(6): 713-25, 2012 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22412017

RESUMO

The endoplasmic reticulum (ER) provides an environment optimized for oxidative protein folding through the action of Ero1p, which generates disulfide bonds, and Pdi1p, which receives disulfide bonds from Ero1p and transfers them to substrate proteins. Feedback regulation of Ero1p through reduction and oxidation of regulatory bonds within Ero1p is essential for maintaining the proper redox balance in the ER. In this paper, we show that Pdi1p is the key regulator of Ero1p activity. Reduced Pdi1p resulted in the activation of Ero1p by direct reduction of Ero1p regulatory bonds. Conversely, upon depletion of thiol substrates and accumulation of oxidized Pdi1p, Ero1p was inactivated by both autonomous oxidation and Pdi1p-mediated oxidation of Ero1p regulatory bonds. Pdi1p responded to the availability of free thiols and the relative levels of reduced and oxidized glutathione in the ER to control Ero1p activity and ensure that cells generate the minimum number of disulfide bonds needed for efficient oxidative protein folding.


Assuntos
Retículo Endoplasmático/metabolismo , Glicoproteínas/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Glutationa/metabolismo , Homeostase , Oxirredução , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
13.
Antioxid Redox Signal ; 16(8): 800-8, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22142242

RESUMO

SIGNIFICANCE: Members of the Erv/ALR/QSOX protein family contain an Erv sequence module and catalyze protein disulfide bond formation. Erv enzymes impact protein function within and outside cells that affects both normal and malignant cell growth. This protein family is named for its founding members: Erv1 (essential for respiratory and vegetative growth 1) and ALR (augmenter of liver regeneration), homologous mitochondrial proteins from yeast and mammals, respectively, and QSOX (quiescin sulfhydryl oxidase), an oxidase secreted from quiescent cells. This review will focus on a subset of Erv proteins that are localized within the secretory pathway: Erv2-like proteins, proteins present in the endoplasmic reticulum of fungi, and QSOX proteins, proteins localized within the secretory pathway and extracellular space and present in most eukaryotes, but not fungi. RECENT ADVANCES: A wealth of structural and biochemical data has been obtained for Erv2 and QSOX proteins. These data have identified a generally conserved catalytic mechanism and structure for the Erv2 and QSOX proteins with unique features for each enzyme. CRITICAL ISSUES: Many fundamental questions remain about the activity for these proteins in living cells including the partners, pathways, and locations utilized by these enzymes in vivo. FUTURE DIRECTIONS: A more comprehensive understanding of the cellular roles for Erv2 and QSOX enzymes will require identification of their partners and substrates. Also, determining when Erv2 and QSOX function during growth and development, and how changes in levels of active Erv2 and QSOX impact cell function, is necessary to facilitate a better understanding of these intriguing enzymes.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo Enxofre/fisiologia , Oxirredutases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Via Secretória , Motivos de Aminoácidos , Animais , Humanos , Oxirredutases/química , Oxirredutases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Protein Sci ; 19(10): 1863-76, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20669236

RESUMO

Ero1p is the primary catalyst of disulfide bond formation in the yeast endoplasmic reticulum (ER). Ero1p contains a pair of essential disulfide bonds that participate directly in the electron transfer pathway from substrate thiol groups to oxygen. Remarkably, elimination of certain other Ero1p disulfides by mutation enhances enzyme activity. In particular, the C150A/C295A Ero1p mutant exhibits increased thiol oxidation in vitro and in vivo and interferes with redox homeostasis in yeast cells by hyperoxidizing the ER. Inhibitory disulfides of Ero1p are thus important for enzyme regulation. To visualize the differences between de-regulated and wild-type Ero1p, we determined the crystal structure of Ero1p C150A/C295A. The structure revealed local changes compared to the wild-type enzyme around the sites of mutation, but no conformational transitions within 25 A of the active site were observed. To determine how the C150--C295 disulfide nonetheless participates in redox regulation of Ero1p, we analyzed using mass spectrometry the changes in Ero1p disulfide connectivity as a function of time after encounter with reducing substrates. We found that the C150--C295 disulfide sets a physiologically appropriate threshold for enzyme activation by guarding a key neighboring disulfide from reduction. This study illustrates the diverse and interconnected roles that disulfides can play in redox regulation of protein activity.


Assuntos
Dissulfetos/química , Glicoproteínas/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Proteínas de Saccharomyces cerevisiae/química , Sítios de Ligação/genética , Domínio Catalítico/genética , Cristalografia por Raios X , Dissulfetos/metabolismo , Transporte de Elétrons , Eletroforese em Gel de Poliacrilamida , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Glicoproteínas/genética , Glicoproteínas/metabolismo , Cinética , Espectrometria de Massas , Modelos Moleculares , Mutação , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
J Cell Biol ; 188(6): 757-8, 2010 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-20308423

RESUMO

The oxidoreductase ERO1 (endoplasmic reticulum [ER] oxidoreductin 1) is thought to be crucial for disulfide bond formation in the ER. In this issue, Zito et al. (2010. J. Cell Biol. doi:10.1083/jcb.200911086) examine the division of labor between the two mammalian isoforms of ERO1 (ERO1-alpha and -beta) in oxidative folding. Their analysis reveals a selective role for ERO1-beta in insulin production and a surprisingly minor contribution for either ERO1 isoform on immunoglobulin folding and secretion.


Assuntos
Glicoproteínas/metabolismo , Dobramento de Proteína , Animais , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/metabolismo , Glicoproteínas/química , Imunoglobulinas/química , Imunoglobulinas/metabolismo , Insulina/química , Insulina/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Oxirredutases
16.
J Biol Chem ; 285(24): 18155-65, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20348090

RESUMO

The sulfhydryl oxidase Ero1 oxidizes protein disulfide isomerase (PDI), which in turn catalyzes disulfide formation in proteins folding in the endoplasmic reticulum (ER). The extent to which other members of the PDI family are oxidized by Ero1 and thus contribute to net disulfide formation in the ER has been an open question. The yeast ER contains four PDI family proteins with at least one potential redox-active cysteine pair. We monitored the direct oxidation of each redox-active site in these proteins by yeast Ero1p in vitro. In this study, we found that the Pdi1p amino-terminal domain was oxidized most rapidly compared with the other oxidoreductase active sites tested, including the Pdi1p carboxyl-terminal domain. This observation is consistent with experiments conducted in yeast cells. In particular, the amino-terminal domain of Pdi1p preferentially formed mixed disulfides with Ero1p in vivo, and we observed synthetic lethality between a temperature-sensitive Ero1p variant and mutant Pdi1p lacking the amino-terminal active-site disulfide. Thus, the amino-terminal domain of yeast Pdi1p is on a preferred pathway for oxidizing the ER thiol pool. Overall, our results provide a rank order for the tendency of yeast ER oxidoreductases to acquire disulfides from Ero1p.


Assuntos
Retículo Endoplasmático/enzimologia , Glicoproteínas/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Oxigênio/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Catálise , Domínio Catalítico , Dissulfetos/química , Flavinas/química , Variação Genética , Glutationa/metabolismo , Mutação , Oxigênio/química , Dobramento de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Temperatura
17.
Science ; 327(5964): 425-31, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20093466

RESUMO

A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for approximately 75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function. The global network identifies functional cross-connections between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a number of different gene attributes, which may be informative about genetic network hubs in other organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions and drug target identification.


Assuntos
Redes Reguladoras de Genes , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biologia Computacional , Duplicação Gênica , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Aptidão Genética , Redes e Vias Metabólicas , Mutação , Mapeamento de Interação de Proteínas , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética
18.
J Mol Biol ; 384(3): 631-40, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-18845159

RESUMO

Oxidoreductases belonging to the protein disulfide isomerase (PDI) family promote proper disulfide bond formation in substrate proteins in the endoplasmic reticulum. In plants and metazoans, new family members continue to be identified and assigned to various functional niches. PDI-like proteins typically contain tandem thioredoxin-fold domains. The limited information available suggested that the relative orientations of these domains may be quite uniform across the family, and structural models based on this assumption are appearing. However, the X-ray crystal structure of the yeast PDI family protein Mpd1p, described here, demonstrates the radically different domain orientations and surface properties achievable with multiple copies of the thioredoxin fold. A comparison of Mpd1p with yeast Pdi1p expands our perspective on the contexts in which redox-active motifs are presented in the PDI family.


Assuntos
Isomerases de Dissulfetos de Proteínas/química , Proteínas Repressoras/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Cristalografia por Raios X/métodos , Dissulfetos , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Ligação Proteica , Conformação Proteica , Isomerases de Dissulfetos de Proteínas/fisiologia , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Proteínas de Saccharomyces cerevisiae/química , Tiorredoxinas/química
19.
Biochim Biophys Acta ; 1783(4): 549-56, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18191641

RESUMO

Living cells must be able to respond to physiological and environmental fluctuations that threaten cell function and viability. A cellular event prone to disruption by a wide variety of internal and external perturbations is protein folding. To ensure protein folding can proceed under a range of conditions, the cell has evolved transcriptional, translational, and posttranslational signaling pathways to maintain folding homeostasis during cell stress. This review will focus on oxidative protein folding in the endoplasmic reticulum (ER) and will discuss the features of the main facilitator of biosynthetic disulfide bond formation, Ero1. Ero1 plays an essential role in setting the redox potential in the ER and regulation of Ero1 activity is central to maintain redox homeostasis and proper ER folding activity.


Assuntos
Retículo Endoplasmático/química , Glicoproteínas/fisiologia , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/fisiologia , Dissulfetos/química , Dissulfetos/metabolismo , Glicoproteínas/química , Homeostase , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Isomerases de Dissulfetos de Proteínas/química , Proteínas de Saccharomyces cerevisiae/química
20.
Cell ; 129(2): 333-44, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-17448992

RESUMO

Introduction of disulfide bonds into proteins entering the secretory pathway is catalyzed by Ero1p, which generates disulfide bonds de novo, and Pdi1p, which transfers disulfides to substrate proteins. A sufficiently oxidizing environment must be maintained in the endoplasmic reticulum (ER) to allow for disulfide formation, but a pool of reduced thiols is needed for isomerization of incorrectly paired disulfides. We have found that hyperoxidation of the ER is prevented by attenuation of Ero1p activity through noncatalytic cysteine pairs. Deregulated Ero1p mutants lacking certain cysteines show increased enzyme activity, a decreased lag phase in kinetic assays, and growth defects in vivo. We hypothesize that noncatalytic cysteine pairs in Ero1p sense the level of potential substrates in the ER and correspondingly modulate Ero1p activity as part of a homeostatic regulatory system governing the thiol-disulfide balance in the ER.


Assuntos
Retículo Endoplasmático/metabolismo , Retroalimentação Fisiológica , Glicoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cistina/metabolismo , Dissulfetos/metabolismo , Retículo Endoplasmático/química , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Saccharomyces cerevisiae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...