Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 87(10): 4649-4664, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36045506

RESUMO

This study synthesized and characterized ZIF-8 nanoparticles encapsulated with trans-cinnamaldehyde oil (TC) and evaluated their antimicrobial effectiveness against Escherichia coli O157:H7 on fresh spinach leaves. The antimicrobial activity of different mass ratios of TC-encapsulated ZIF-8 against E. coli O157:H7 (ATCC 43895) strain was assessed and the best mass ratio of 1:2 TC to ZIF-8 identified. Spinach leaves were treated with (1) 0.5TC@ZIF-8_PL nanoparticle complexes solution, (2) 200 ppm chlorine, (3) free TC, and (4) sterilized distilled water (control). All sample groups were rinsed for 1 min, dried in a biosafety cabinet, weighted, and packed in sterilized Whirl-pkTM Stand-Up sampling bags, and stored at 4°C for 15 days for shelf life studies. Samples were dipped into a solution of nanoparticles and another group was sprayed. The quality of spinach samples was assessed by monitoring changes in moisture content (MC), water activity (Aw), color, pH, texture (firmness and work), vitamin C content, total carotenoid, and chlorophyll content. Spinach leaves treated with 0.5TC@ZIF-8_PL had less (p < 0.05) water, total chlorophyll, and total carotenoid losses, with minimal changes in pH. However, treatment did not prevent the color degradation (p > 0.05) and adversely affected spinach firmness. The spinach samples treated with 200 ppm chlorine and free TC had higher (p < 0.05) total chlorophyll degradation than the samples treated with the nanoparticles. The mass ratio of TC-encapsulated ZIF-8 must be readjusted to reduce potential toxicity issues while maintaining the antimicrobial properties. PRACTICAL APPLICATION: Zeolitic imidazolate framework-8 (ZIF-8) nanoparticle complex can be used to encapsulate natural antimicrobials to inhibit growth of pathogens on fresh produce. A 2-log reduction in populations of Escherichia coli O157:H7 on fresh spinach leaves was achieved using trans-cinnamaldehyde at low concentrations. The results can be used to embed the compounds into polymeric films for antimicrobial packaging applications.


Assuntos
Anti-Infecciosos , Escherichia coli O157 , Nanopartículas , Zeolitas , Anti-Infecciosos/farmacologia , Ácido Ascórbico , Carotenoides , Cloro/farmacologia , Clorofila , Contagem de Colônia Microbiana , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Folhas de Planta , Spinacia oleracea/microbiologia , Água , Zeolitas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...