Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 285(27): 20580-7, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20457606

RESUMO

The Trypanosoma brucei genome has four highly similar genes encoding sphingolipid synthases (TbSLS1-4). TbSLSs are polytopic membrane proteins that are essential for viability of the pathogenic bloodstream stage of this human protozoan parasite and, consequently, can be considered as potential drug targets. TbSLS4 was shown previously to be a bifunctional sphingomyelin/ethanolamine phosphorylceramide synthase, whereas functions of the others were not characterized. Using a recently described liposome-supplemented cell-free synthesis system, which eliminates complications from background cellular activities, we now unambiguously define the enzymatic specificity of the entire gene family. TbSLS1 produces inositol phosphorylceramide, TbSLS2 produces ethanolamine phosphorylceramide, and TbSLS3 is bifunctional, like TbSLS4. These findings indicate that TbSLS1 is uniquely responsible for synthesis of inositol phosphorylceramide in insect stage parasites, in agreement with published expression array data (17). This approach also revealed that the Trypanosoma cruzi ortholog (TcSLS1) is a dedicated inositol phosphorylceramide synthase. The cell-free synthesis system allowed rapid optimization of the reaction conditions for these enzymes and site-specific mutagenesis to alter end product specificity. A single residue at position 252 (TbSLS1, Ser(252); TbSLS3, Phe(252)) strongly influences enzymatic specificity. We also have used this system to demonstrate that aureobasidin A, a potent inhibitor of fungal inositol phosphorylceramide synthases, does not significantly affect any of the TbSLS activities, consistent with the phylogenetic distance of these two clades of sphingolipid synthases. These results represent the first application of cell-free synthesis for the rapid preparation and functional annotation of integral membrane proteins and thus illustrate its utility in studying otherwise intractable enzyme systems.


Assuntos
Esfingolipídeos/biossíntese , Trypanosoma/genética , Tripanossomíase/genética , Regiões 3' não Traduzidas/genética , Animais , Sistema Livre de Células , Ceramidas/metabolismo , Clonagem Molecular , Genoma , Humanos , Lipossomos , Mutagênese Sítio-Dirigida , Fases de Leitura Aberta , Saccharomyces cerevisiae/genética , Esferoplastos/genética , Transcrição Gênica , Trypanosoma/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Tripanossomíase/metabolismo
2.
Mol Biol Cell ; 20(22): 4739-50, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19759175

RESUMO

The variant surface glycoprotein (VSG) of bloodstream form Trypanosoma brucei (Tb) is a critical virulence factor. The VSG glycosylphosphatidylinositol (GPI)-anchor strongly influences passage through the early secretory pathway. Using a dominant-negative mutation of TbSar1, we show that endoplasmic reticulum (ER) exit of secretory cargo in trypanosomes is dependent on the coat protein complex II (COPII) machinery. Trypanosomes have two orthologues each of the Sec23 and Sec24 COPII subunits, which form specific heterodimeric pairs: TbSec23.1/TbSec24.2 and TbSec23.2/TbSec24.1. RNA interference silencing of each subunit is lethal but has minimal effects on trafficking of soluble and transmembrane proteins. However, silencing of the TbSec23.2/TbSec24.1 pair selectively impairs ER exit of GPI-anchored cargo. All four subunits colocalize to one or two ER exit sites (ERES), in close alignment with the postnuclear flagellar adherence zone (FAZ), and closely juxtaposed to corresponding Golgi clusters. These ERES are nucleated on the FAZ-associated ER. The Golgi matrix protein Tb Golgi reassembly stacking protein defines a region between the ERES and Golgi, suggesting a possible structural role in the ERES:Golgi junction. Our results confirm a selective mechanism for GPI-anchored cargo loading into COPII vesicles and a remarkable degree of streamlining in the early secretory pathway. This unusual architecture probably maximizes efficiency of VSG transport and fidelity in organellar segregation during cytokinesis.


Assuntos
Glicosilfosfatidilinositóis/metabolismo , Via Secretória/fisiologia , Trypanosoma brucei brucei , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo , Animais , Animais Geneticamente Modificados , Transporte Biológico/fisiologia , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Interferência de RNA , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/patogenicidade , Trypanosoma brucei brucei/ultraestrutura
3.
Eukaryot Cell ; 8(9): 1352-61, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19581441

RESUMO

African trypanosomes are the causative agents of human trypanosomiasis (sleeping sickness). The pathogenic stage of the parasite has unique adaptations to life in the bloodstream of the mammalian host, including upregulation of endocytic and lysosomal activities. We investigated stage-specific requirements for cytoplasmic adaptor/clathrin machinery in post-Golgi apparatus biosynthetic sorting to the lysosome using RNA interference silencing of the Tbmu1 subunit of adaptor complex 1 (AP-1), in conjunction with immunolocalization, kinetic analyses of reporter transport, and quantitative endocytosis assays. Tbmu1 silencing was lethal in both stages, indicating a critical function(s) for the AP-1 machinery. Transport of soluble and membrane-bound secretory cargoes was Tbmu1 independent in both stages. In procyclic parasites, trafficking of the lysosomal membrane protein, p67, was disrupted, leading to cell surface mislocalization. The lysosomal protease trypanopain was also secreted, suggesting a transmembrane-sorting receptor for this soluble hydrolase. In bloodstream trypanosomes, both p67 and trypanopain trafficking were unaffected by Tbmu1 silencing, suggesting that AP-1 is not necessary for biosynthetic lysosomal trafficking. Endocytosis in bloodstream cells was also unaffected, indicating that AP-1 does not function at the flagellar pocket. These results indicate that post-Golgi apparatus sorting to the lysosome is critically dependent on the AP-1/clathrin machinery in procyclic trypanosomes but that this machinery is not necessary in bloodstream parasites. We propose a simple model for stage-specific default secretory trafficking in trypanosomes that is consistent with the behavior of other soluble and glycosylphosphatidylinositol-anchored cargos and which is influenced by upregulation of endocytosis in bloodstream parasites as an adaptation to life in the mammalian bloodstream.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Lisossomos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/metabolismo , Complexo 1 de Proteínas Adaptadoras/genética , Animais , Inativação Gênica , Humanos , Lisossomos/parasitologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/parasitologia
4.
Mol Microbiol ; 70(2): 281-96, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18699867

RESUMO

Sphingolipids are essential components of eukaryotic membranes, and many unicellular eukaryotes, including kinetoplastid protozoa, are thought to synthesize exclusively inositol phosphorylceramide (IPC). Here we characterize sphingolipids from Trypanosoma brucei, and a trypanosome sphingolipid synthase gene family (TbSLS1-4) that is orthologous to Leishmania IPC synthase. Procyclic trypanosomes contain IPC, but also sphingomyelin, while surprisingly bloodstream-stage parasites contain sphingomyelin and ethanolamine phosphorylceramide (EPC), but no detectable IPC. In vivo fluorescent ceramide labelling confirmed stage-specific biosynthesis of both sphingomyelin and IPC. Expression of TbSLS4 in Leishmania resulted in production of sphingomyelin and EPC suggesting that the TbSLS gene family has bi-functional synthase activity. RNAi silencing of TbSLS1-4 in bloodstream trypanosomes led to rapid growth arrest and eventual cell death. Ceramide levels were increased more than threefold by silencing suggesting a toxic downstream effect mediated by this potent intracellular messenger. Topology predictions support a revised six-transmembrane domain model for the kinetoplastid sphingolipid synthases consistent with the proposed mammalian sphingomyelin synthase structure. This work reveals novel diversity and regulation in sphingolipid metabolism in this important group of human parasites.


Assuntos
Esfingolipídeos/biossíntese , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/fisiologia , África , Sequência de Aminoácidos , Animais , Expressão Gênica , Inativação Gênica , Glicoesfingolipídeos/isolamento & purificação , Humanos , Leishmania/genética , Ligases/antagonistas & inibidores , Ligases/genética , Ligases/metabolismo , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência , Esfingomielinas/isolamento & purificação , Trypanosoma brucei brucei/isolamento & purificação
5.
J Infect Dis ; 190(9): 1556-62, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15478059

RESUMO

Interaction of the Duffy binding protein (DBP) with its erythrocyte receptor is critical for maintaining Plasmodium vivax blood-stage infections, making DBP an appealing vaccine candidate. The cysteine-rich region II is the ligand domain of DBP and a target of vaccine development. Interestingly, most of the allelic diversity observed in DBP is due to the high rate of nonsynonymous polymorphisms in this critical domain for receptor recognition. Similar to the hypervariability in influenza hemagglutinin, this pattern of polymorphisms in the DBP ligand domain suggests that this variation is a mechanism to evade antibody neutralization. To evaluate the role that dbp allelic diversity plays in strain-specific immunity, we examined the ability of an anti-Sal1 DBP serum to inhibit the erythrocyte-binding function of variant dbp alleles expressed on COS cells. We observed that the PNG-7.18 allele was significantly less sensitive to immune inhibition of its erythrocyte-binding activity than were the Sal1 and PNG-27.16 alleles. This result suggested that the unique polymorphisms of resistant PNG-7.18 were part of a protective epitope on the DBP ligand. To confirm this, Sal1 was converted to the refractory phenotype by introduction of 3 polymorphisms unique to PNG-7.18, via site-directed mutagenesis. The results of the present study indicate that linked polymorphisms have an additive, synergistic effect on DBP antigenic character.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Variação Genética , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Receptores de Superfície Celular/imunologia , Alelos , Animais , Reações Antígeno-Anticorpo , Antígenos de Protozoários/genética , Células COS , Chlorocebus aethiops , Sistema do Grupo Sanguíneo Duffy , Deriva Genética , Humanos , Ligantes , Malária Vivax/imunologia , Mutagênese Sítio-Dirigida , Mutação , Papua Nova Guiné , Plasmodium vivax/genética , Polimorfismo Genético , Estrutura Terciária de Proteína , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...