Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(45): 41284-41295, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36406552

RESUMO

Biodegradation of estrogen hormone micropollutants is a well-established approach toward their remediation. Fluorescently labeled substrates are used extensively for rapid, near-real-time analysis of biological processes and are a potential tool for studying biodegradation processes faster and more efficiently than conventional approaches. However, it is important to understand how the fluorescently tagged surrogates compare with the natural substrate in terms of chemical analysis and the intended application. We derivatized three natural estrogens with BODIPY fluorophores by azide-alkyne cycloaddition click reaction and developed an analytical workflow based on simple liquid-liquid extraction and HPLC-PDA analysis. The developed methods allow for concurrent analysis of both fluorescent and natural estrogens with comparable recovery, accuracy, and precision. We then evaluated the use of BODIPY-labeled estrogens as surrogate substrates for studying biodegradation using a model bacterium for estrogen metabolism. The developed analytical methods were successfully employed to compare the biological transformation of 17ß-estradiol (E2), with and without the BODIPY fluorescent tag. Through measuring the complete degradation of E2 and the transformation of BODIPY-estradiol to BODIPY-estrone in the presence of a co-substrate, we found that BODIPY-labeled estrogens are biologically viable surrogates for investigating biodegradation in environmental bacteria.

2.
PLoS Pathog ; 14(4): e1006918, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29614109

RESUMO

The malaria-causing blood stage of Plasmodium falciparum requires extracellular pantothenate for proliferation. The parasite converts pantothenate into coenzyme A (CoA) via five enzymes, the first being a pantothenate kinase (PfPanK). Multiple antiplasmodial pantothenate analogues, including pantothenol and CJ-15,801, kill the parasite by targeting CoA biosynthesis/utilisation. Their mechanism of action, however, remains unknown. Here, we show that parasites pressured with pantothenol or CJ-15,801 become resistant to these analogues. Whole-genome sequencing revealed mutations in one of two putative PanK genes (Pfpank1) in each resistant line. These mutations significantly alter PfPanK activity, with two conferring a fitness cost, consistent with Pfpank1 coding for a functional PanK that is essential for normal growth. The mutants exhibit a different sensitivity profile to recently-described, potent, antiplasmodial pantothenate analogues, with one line being hypersensitive. We provide evidence consistent with different pantothenate analogue classes having different mechanisms of action: some inhibit CoA biosynthesis while others inhibit CoA-utilising enzymes.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos , Malária/tratamento farmacológico , Mutação , Ácido Pantotênico/análogos & derivados , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Plasmodium falciparum/efeitos dos fármacos , Animais , Coenzima A/biossíntese , Eritrócitos/parasitologia , Malária/parasitologia , Ácido Pantotênico/farmacologia , Testes de Sensibilidade Parasitária , Fosforilação , Proteínas de Protozoários/genética
3.
Eur J Med Chem ; 143: 1139-1147, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29233590

RESUMO

Survival of the human malaria parasite Plasmodium falciparum is dependent on pantothenate (vitamin B5), a precursor of the fundamental enzyme cofactor coenzyme A. CJ-15,801, an enamide analogue of pantothenate isolated from the fungus Seimatosporium sp. CL28611, was previously shown to inhibit P. falciparum proliferation in vitro by targeting pantothenate utilization. To inform the design of next generation analogues, we set out to synthesize and test a series of synthetic enamide-bearing pantothenate analogues. We demonstrate that conservation of the R-pantoyl moiety and the trans-substituted double bond of CJ-15,801 is important for the selective, on-target antiplasmodial effect, while replacement of the carboxyl group is permitted, and, in one case, favored. Additionally, we show that the antiplasmodial potency of CJ-15,801 analogues that retain the R-pantoyl and trans-substituted enamide moieties correlates with inhibition of P. falciparum pantothenate kinase (PfPanK)-catalyzed pantothenate phosphorylation, implicating the interaction with PfPanK as a key determinant of antiplasmodial activity.


Assuntos
Antimaláricos/farmacologia , Ácido Pantotênico/análogos & derivados , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/síntese química , Antimaláricos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Ácido Pantotênico/síntese química , Ácido Pantotênico/química , Ácido Pantotênico/farmacologia , Testes de Sensibilidade Parasitária , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Plasmodium falciparum/enzimologia , Relação Estrutura-Atividade
4.
Chemistry ; 21(52): 19119-27, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26564395

RESUMO

Palladium(II)-catalysed cycloalkenylation (Saegusa-Ito cyclisation) has been used for the first time to transform difluorinated silylenol ethers to difluorinated cycloalkenones under mild conditions. The silylenol ether precursors were prepared in two high-yielding steps from trifluoroethanol, and cyclised in moderate to good yields. A combination of air and copper(I) chloride in acetonitrile gave the turnover of the initial palladium(II) salt, whereas the provision of an oxygen atmosphere ensured more rapid reaction. Annulations required a minimum level of substitution on the chain, but failed when the alkene was substituted. Annelations allowed a range of n,6-bicyclic systems to be prepared and afforded three products, in which heterocycles were fused to the new cyclohexenone. The least substituted system explored underwent cyclisation followed by terminal oxidation to a cyclic enal, which corresponded to a Wacker product of unusual regiochemistry.

5.
Org Lett ; 13(4): 800-3, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21250753

RESUMO

The fast and efficient syntheses of pantothenic acid and the antiparasitic agent CJ-15,801 have been achieved starting from a common imide unit through the selective manipulation of enamide intermediates.


Assuntos
Imidas/química , Ácido Pantotênico/análogos & derivados , Ácido Pantotênico/síntese química , Conformação Molecular , Estrutura Molecular , Ácido Pantotênico/química , Ácido Pantotênico/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...