Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Growth Horm IGF Res ; 69-70: 101533, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37086646

RESUMO

AIMS: To examine associations between the transcription factors CCCTC-binding factor (CTCF) and forkhead box protein A1 (FOXA1) and the androgen receptor (AR) and their association with components of the insulin-like growth factor (IGF)-pathway in a cohort of men with localized prostate cancer. METHODS: Using prostate tissue samples collected during the Prostate cancer: Evidence of Exercise and Nutrition Trial (PrEvENT) trial (N = 70 to 92, depending on section availability), we assessed the abundance of CTCF, FOXA1, AR, IGFIR, p-mTOR, PTEN and IGFBP-2 proteins using a modified version of the Allred scoring system. Validation studies were performed using large, publicly available datasets (TCGA) (N = 489). RESULTS: We identified a strong correlation between CTCF and AR staining with benign prostate tissue. CTCF also strongly associated with the IGFIR, with PTEN and with phospho-mTOR. FOXA1 was also correlated with staining for the IGF-IR, with IGFBP-2 and with staining for activated phosphor-mTOR. The staining for the IGF-IR was strongly correlated with the AR. CONCLUSION: Our findings emphasise the close and complex links between the endocrine controls, well known to play an important role in prostate cancer, and the transcription factors implicated by the recent genetic evidence.


Assuntos
Neoplasias da Próstata , Somatomedinas , Masculino , Humanos , Androgênios , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Fator de Ligação a CCCTC/genética , Linhagem Celular Tumoral , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Somatomedinas/genética , Somatomedinas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo
3.
Cancers (Basel) ; 13(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669311

RESUMO

Prostate cancer is the second major cause of male cancer deaths. Obesity, type 2 diabetes, and cancer risk are linked. Insulin-like growth factor II (IGF-II) is involved in numerous cellular events, including proliferation and survival. The IGF-II gene shares its locus with the lncRNA, H19. IGF-II/H19 was the first gene to be identified as being "imprinted"-where the paternal copy is not transcribed-a silencing phenomenon lost in many cancer types. We disrupted imprinting behaviour in vitro by altering metabolic conditions and quantified it using RFLP, qPCR and pyrosequencing; changes to peptide were measured using RIA. Prostate tissue samples were analysed using ddPCR, pyrosequencing and IHC. We compared with in silico data, provided by TGCA on the cBIO Portal. We observed disruption of imprinting behaviour, in vitro, with a significant increase in IGF-II and a reciprocal decrease in H19 mRNA; the increased mRNA was not translated into peptides. In vivo, most specimens retained imprinting status apart from a small subset which showed reduced imprinting. A positive correlation was seen between IGF-II and H19 mRNA expression, which concurred with findings of larger Cancer Genome Atlas (TGCA) cohorts. This positive correlation did not affect IGF-II peptide. Our findings show that type 2 diabetes and/or obesity, can directly affect regulation growth factors involved in carcinogenesis, indirectly suggesting a modification of lifestyle habits may reduce cancer risk.

4.
Oncotarget ; 11(26): 2543-2559, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32655839

RESUMO

Localized prostate cancer (PCa) is a manageable disease but for most men with metastatic disease, it is often fatal. A western diet has been linked with PCa progression and hyperglycaemia has been associated with the risk of lethal and fatal prostate cancer. Using PCa cell lines, we examined the impact of IGF-I and glucose on markers of epithelial-to-mesenchymal transition (EMT), migration and invasion. We examined the underlying mechanisms using cell lines and tumour tissue samples. IGF-I had differential effects on the process of EMT: inhibiting in normal and promoting in cancer cells, whereas hyperglycamia alone had a stimulatory effect in both. These effects were independent of IGF and in both cases, hyperglycaemia induced an increase IGFBP-2(tumour promoter) and FOXA1. A positive correlation existed between levels of IGFBP-2 and FOXA1 in benign and cancerous prostate tissue samples and in vitro and in vivo data indicated that FOXA1 strongly interacted with the IGFBP-2 gene in normal prostate epithelial cells that was associated with a negative regulation of IGFBP-2, whereas in cancer cells the level of FOXA1 associating with the IGFBP-2 gene was minimal, suggesting loss of this negative regulation. IGF-I and hyperglycaemia-induced FOXA1/IGFBP-2 play important roles in EMT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...