Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 11(3): 1196-1207, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35156365

RESUMO

Reliable, predictable engineering of cellular behavior is one of the key goals of synthetic biology. As the field matures, biological engineers will become increasingly reliant on computer models that allow for the rapid exploration of design space prior to the more costly construction and characterization of candidate designs. The efficacy of such models, however, depends on the accuracy of their predictions, the precision of the measurements used to parametrize the models, and the tolerance of biological devices for imperfections in modeling and measurement. To better understand this relationship, we have derived an Engineering Error Inequality that provides a quantitative mathematical bound on the relationship between predictability of results, model accuracy, measurement precision, and device characteristics. We apply this relation to estimate measurement precision requirements for engineering genetic regulatory networks given current model and device characteristics, recommending a target standard deviation of 1.5-fold. We then compare these requirements with the results of an interlaboratory study to validate that these requirements can be met via flow cytometry with matched instrument channels and an independent calibrant. On the basis of these results, we recommend a set of best practices for quality control of flow cytometry data and discuss how these might be extended to other measurement modalities and applied to support further development of genetic regulatory network engineering.


Assuntos
Redes Reguladoras de Genes , Biologia Sintética , Simulação por Computador , Citometria de Fluxo , Redes Reguladoras de Genes/genética , Engenharia Genética/métodos , Biologia Sintética/métodos
2.
J Integr Bioinform ; 18(3)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34098590

RESUMO

People who are engineering biological organisms often find it useful to communicate in diagrams, both about the structure of the nucleic acid sequences that they are engineering and about the functional relationships between sequence features and other molecular species. Some typical practices and conventions have begun to emerge for such diagrams. The Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard for organizing and systematizing such conventions in order to produce a coherent language for expressing the structure and function of genetic designs. This document details version 2.3 of SBOL Visual, which builds on the prior SBOL Visual 2.2 in several ways. First, the specification now includes higher-level "interactions with interactions," such as an inducer molecule stimulating a repression interaction. Second, binding with a nucleic acid backbone can be shown by overlapping glyphs, as with other molecular complexes. Finally, a new "unspecified interaction" glyph is added for visualizing interactions whose nature is unknown, the "insulator" glyph is deprecated in favor of a new "inert DNA spacer" glyph, and the polypeptide region glyph is recommended for showing 2A sequences.


Assuntos
Linguagens de Programação , Biologia Sintética , Humanos , Idioma
3.
Mol Syst Biol ; 16(7): e9618, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32672881

RESUMO

The engineering of advanced multicellular behaviors, such as the programmed growth of biofilms or tissues, requires cells to communicate multiple aspects of physiological information. Unfortunately, few cell-cell communication systems have been developed for synthetic biology. Here, we engineer a genetically encoded channel selector device that enables a single communication system to transmit two separate intercellular conversations. Our design comprises multiplexer and demultiplexer sub-circuits constructed from a total of 12 CRISPRi-based transcriptional logic gates, an acyl homoserine lactone-based communication module, and three inducible promoters that enable small molecule control over the conversations. Experimentally parameterized mathematical models of the sub-components predict the steady state and dynamical performance of the full system. Multiplexed cell-cell communication has applications in synthetic development, metabolic engineering, and other areas requiring the coordination of multiple pathways among a community of cells.


Assuntos
Sistemas CRISPR-Cas , Comunicação Celular/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Engenharia Metabólica/métodos , Percepção de Quorum/genética , Biologia Sintética/métodos , Escherichia coli/metabolismo , Homosserina/genética , Homosserina/metabolismo , Regiões Promotoras Genéticas , RNA Guia de Cinetoplastídeos , Proteínas Recombinantes , Bibliotecas de Moléculas Pequenas
4.
J Integr Bioinform ; 17(2-3)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32543457

RESUMO

People who are engineering biological organisms often find it useful to communicate in diagrams, both about the structure of the nucleic acid sequences that they are engineering and about the functional relationships between sequence features and other molecular species. Some typical practices and conventions have begun to emerge for such diagrams. The Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard for organizing and systematizing such conventions in order to produce a coherent language for expressing the structure and function of genetic designs. This document details version 2.2 of SBOL Visual, which builds on the prior SBOL Visual 2.1 in several ways. First, the grounding of molecular species glyphs is changed from BioPAX to SBO, aligning with the use of SBO terms for interaction glyphs. Second, new glyphs are added for proteins, introns, and polypeptide regions (e. g., protein domains), the prior recommended macromolecule glyph is deprecated in favor of its alternative, and small polygons are introduced as alternative glyphs for simple chemicals.


Assuntos
Linguagens de Programação , Biologia Sintética , Humanos , Idioma
5.
ACS Synth Biol ; 8(8): 1818-1825, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31348656

RESUMO

Biological engineers often find it useful to communicate using diagrams. These diagrams can include information both about the structure of the nucleic acid sequences they are engineering and about the functional relationships between features of these sequences and/or other molecular species. A number of conventions and practices have begun to emerge within synthetic biology for creating such diagrams, and the Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard to organize, systematize, and extend such conventions in order to produce a coherent visual language. Here, we describe SBOL Visual version 2, which expands previous diagram standards to include new functional interactions, categories of molecular species, support for families of glyph variants, and the ability to indicate modular structure and mappings between elements of a system. SBOL Visual 2 also clarifies a number of requirements and best practices, significantly expands the collection of glyphs available to describe genetic features, and can be readily applied using a wide variety of software tools, both general and bespoke.


Assuntos
Linguagens de Programação , Biologia Sintética/métodos , Modelos Teóricos , Software
6.
J Integr Bioinform ; 16(2)2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31199768

RESUMO

People who are engineering biological organisms often find it useful to communicate in diagrams, both about the structure of the nucleic acid sequences that they are engineering and about the functional relationships between sequence features and other molecular species . Some typical practices and conventions have begun to emerge for such diagrams. The Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard for organizing and systematizing such conventions in order to produce a coherent language for expressing the structure and function of genetic designs. This document details version 2.1 of SBOL Visual, which builds on the prior SBOL Visual 2.0 standard by expanding diagram syntax to include methods for showing modular structure and mappings between elements of a system, interactions arrows that can split or join (with the glyph at the split or join indicating either superposition or a chemical process), and adding new glyphs for indicating genomic context (e.g., integration into a plasmid or genome) and for stop codons.


Assuntos
Modelos Biológicos , Linguagens de Programação , Biologia Sintética
7.
J Integr Bioinform ; 15(1)2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29549707

RESUMO

People who are engineering biological organisms often find it useful to communicate in diagrams, both about the structure of the nucleic acid sequences that they are engineering and about the functional relationships between sequence features and other molecular species. Some typical practices and conventions have begun to emerge for such diagrams. The Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard for organizing and systematizing such conventions in order to produce a coherent language for expressing the structure and function of genetic designs. This document details version 2.0 of SBOL Visual, which builds on the prior SBOL Visual 1.0 standard by expanding diagram syntax to include functional interactions and molecular species, making the relationship between diagrams and the SBOL data model explicit, supporting families of symbol variants, clarifying a number of requirements and best practices, and significantly expanding the collection of diagram glyphs.


Assuntos
Gráficos por Computador/normas , Modelos Biológicos , Linguagens de Programação , Software , Biologia Sintética/normas , Animais , Guias como Assunto , Humanos , Transdução de Sinais
8.
ACS Synth Biol ; 5(7): 774-80, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27110723

RESUMO

Flow cytometry is widely used to measure gene expression and other molecular biological processes with single cell resolution via fluorescent probes. Flow cytometers output data in arbitrary units (a.u.) that vary with the probe, instrument, and settings. Arbitrary units can be converted to the calibrated unit molecules of equivalent fluorophore (MEF) using commercially available calibration particles. However, there is no convenient, nonproprietary tool available to perform this calibration. Consequently, most researchers report data in a.u., limiting interpretation. Here, we report a software tool named FlowCal to overcome current limitations. FlowCal can be run using an intuitive Microsoft Excel interface, or customizable Python scripts. The software accepts Flow Cytometry Standard (FCS) files as inputs and is compatible with different calibration particles, fluorescent probes, and cell types. Additionally, FlowCal automatically gates data, calculates common statistics, and produces publication quality plots. We validate FlowCal by calibrating a.u. measurements of E. coli expressing superfolder GFP (sfGFP) collected at 10 different detector sensitivity (gain) settings to a single MEF value. Additionally, we reduce day-to-day variability in replicate E. coli sfGFP expression measurements due to instrument drift by 33%, and calibrate S. cerevisiae Venus expression data to MEF units. Finally, we demonstrate a simple method for using FlowCal to calibrate fluorescence units across different cytometers. FlowCal should ease the quantitative analysis of flow cytometry data within and across laboratories and facilitate the adoption of standard fluorescence units in synthetic biology and beyond.


Assuntos
Citometria de Fluxo/métodos , Software , Calibragem , Escherichia coli/citologia , Escherichia coli/genética , Escherichia coli/metabolismo , Citometria de Fluxo/instrumentação , Corantes Fluorescentes , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Substâncias Luminescentes/metabolismo , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/citologia , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...