Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 63(22): 13796-13824, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33170686

RESUMO

Proprotein convertase subtilisin-like/kexin type 9 (PCSK9) is a key regulator of plasma LDL-cholesterol (LDL-C) and a clinically validated target for the treatment of hypercholesterolemia and coronary artery disease. In this paper, we describe a series of novel cyclic peptides derived from an mRNA display screen which inhibit the protein-protein interaction between PCSK9 and LDLR. Using a structure-based drug design approach, we were able to modify our original screening lead 2 to optimize the potency and metabolic stability and minimize the molecular weight to provide novel bicyclic next-generation PCSK9 inhibitor peptides such as 78. These next-generation peptides serve as a critical foundation for continued exploration of potential oral, once-a-day PCSK9 therapeutics for the treatment of cardiovascular disease.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/metabolismo , Inibidores de PCSK9 , Pró-Proteína Convertase 9/metabolismo , RNA Mensageiro/metabolismo , Animais , Células Cultivadas , Cristalografia por Raios X/métodos , Inibidores Enzimáticos/química , Feminino , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pró-Proteína Convertase 9/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Mensageiro/química , Ratos , Ratos Wistar , Relação Estrutura-Atividade
2.
Kidney Int ; 95(3): 655-665, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30655025

RESUMO

Complement plays an important role in the pathogenesis of lupus nephritis (LN). With the emergence of therapeutic complement inhibition, there is a need to identify patients in whom complement-driven inflammation is a major cause of kidney injury in LN. Clinical and histopathological data were obtained retrospectively from 57 biopsies with class III, IV, and V LN. Biopsies were stained for complement components C9, C5b-9, C3c, and C3d and for the macrophage marker CD68. C9 and C5b-9 staining were highly correlated (r = 0.92 in the capillary wall). C5b-9 staining was detected in the mesangium and/or capillary wall of both active and chronic proliferative LN in all but one biopsy and in the capillary wall of class V LN in all biopsies. C5b-9 staining intensity in the tubular basement membrane correlated with markers of tubulointerstitial damage, and more intense capillary wall C5b-9 staining was significantly associated with nonresponse to conventional treatment. Glomerular C5b-9 staining intensity did not differ between active and chronic disease; in contrast, C3c and CD68 staining were associated with active disease. Evaluation of serial biopsies and comparison of staining in active and chronic LN demonstrated that C5b-9 staining persisted for months to years. These results suggest that C5b-9 staining is almost always present in LN, resolves slowly, and is not a reliable marker of ongoing glomerular C5 activation. This limits the utility of C5b-9 staining to identify patients who are most likely to benefit from C5 inhibition.


Assuntos
Ativação do Complemento , Complemento C5/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/análise , Glomérulos Renais/patologia , Nefrite Lúpica/imunologia , Adolescente , Adulto , Idoso , Biomarcadores/análise , Biópsia , Complemento C5/antagonistas & inibidores , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Feminino , Humanos , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Glomérulos Renais/imunologia , Nefrite Lúpica/tratamento farmacológico , Nefrite Lúpica/patologia , Masculino , Pessoa de Meia-Idade , Seleção de Pacientes , Reprodutibilidade dos Testes , Estudos Retrospectivos , Adulto Jovem
3.
Sci Rep ; 6: 30263, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27457881

RESUMO

Pre-treatment or priming of mesenchymal stem cells (MSC) prior to transplantation can significantly augment the immunosuppressive effect of MSC-based therapies. In this study, we screened a library of 1402 FDA-approved bioactive compounds to prime MSC. We identified tetrandrine as a potential hit that activates the secretion of prostaglandin E2 (PGE2), a potent immunosuppressive agent, by MSC. Tetrandrine increased MSC PGE2 secretion through the NF-κB/COX-2 signaling pathway. When co-cultured with mouse macrophages (RAW264.7), tetrandrine-primed MSC attenuated the level of TNF-α secreted by RAW264.7. Furthermore, systemic transplantation of primed MSC into a mouse ear skin inflammation model significantly reduced the level of TNF-α in the inflamed ear, compared to unprimed cells. Screening of small molecules to pre-condition cells prior to transplantation represents a promising strategy to boost the therapeutic potential of cell therapy.


Assuntos
Benzilisoquinolinas/farmacologia , Imunossupressores/farmacologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Animais , Ciclo-Oxigenase 2/imunologia , Humanos , Imunomodulação/efeitos dos fármacos , Programas de Rastreamento , Células-Tronco Mesenquimais/imunologia , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/imunologia , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Bibliotecas de Moléculas Pequenas
4.
PLoS One ; 10(7): e0132604, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26161952

RESUMO

Microgliosis is a major hallmark of Alzheimer's disease (AD) brain pathology. Aß peptide is hypothesized to act as a stimulus for microglia leading to activation of non-receptor tyrosine kinases and subsequent secretion of pro-inflammatory cytokines. Therefore, the signaling pathways mediating microglial activation may be important therapeutic targets of anti-inflammatory therapy for AD. Four novel compounds were chosen after high throughput screening kinase activity assays determined them as potential Lyn kinase inhibitors. Their kinase inhibitory and anti-inflammatory effect on Aß-stimulated activation was assessed using the murine microglial cell line, BV2. Cells were treated with the compounds to determine effects on active, phosphorylated levels of Src family kinases, Src and Lyn, as well as MAP kinases ERK, JNK and p38. Only one compound, LDDN-0003499, produced a dose dependent decrease in basal levels of active, phosphorylated Src and Lyn in the BV2 cells. LDDN-0003499 treatment also attenuated the Aß-stimulated increase in active, phosphorylated levels of Lyn/Src and TNFα and IL-6 secretion. This study identifies a novel small molecule Src family tyrosine kinase inhibitor with anti-inflammatory effects in response to Aß stimulation of microglia. Further in vitro/in vivo characterization of LDDN-0003499 as well as structural modification may provide a new tool for attenuating microglial-mediated brain inflammatory conditions such as that occurring in AD.


Assuntos
Gliose/patologia , Quinases da Família src/antagonistas & inibidores , Administração Oral , Peptídeos beta-Amiloides/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Células CACO-2 , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Gliose/enzimologia , Humanos , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Microssomos/efeitos dos fármacos , Microssomos/metabolismo , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinases da Família src/metabolismo
5.
PLoS Biol ; 12(8): e1001923, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25093460

RESUMO

STEP (STriatal-Enriched protein tyrosine Phosphatase) is a neuron-specific phosphatase that regulates N-methyl-D-aspartate receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) trafficking, as well as ERK1/2, p38, Fyn, and Pyk2 activity. STEP is overactive in several neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease (AD). The increase in STEP activity likely disrupts synaptic function and contributes to the cognitive deficits in AD. AD mice lacking STEP have restored levels of glutamate receptors on synaptosomal membranes and improved cognitive function, results that suggest STEP as a novel therapeutic target for AD. Here we describe the first large-scale effort to identify and characterize small-molecule STEP inhibitors. We identified the benzopentathiepin 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (known as TC-2153) as an inhibitor of STEP with an IC50 of 24.6 nM. TC-2153 represents a novel class of PTP inhibitors based upon a cyclic polysulfide pharmacophore that forms a reversible covalent bond with the catalytic cysteine in STEP. In cell-based secondary assays, TC-2153 increased tyrosine phosphorylation of STEP substrates ERK1/2, Pyk2, and GluN2B, and exhibited no toxicity in cortical cultures. Validation and specificity experiments performed in wild-type (WT) and STEP knockout (KO) cortical cells and in vivo in WT and STEP KO mice suggest specificity of inhibitors towards STEP compared to highly homologous tyrosine phosphatases. Furthermore, TC-2153 improved cognitive function in several cognitive tasks in 6- and 12-mo-old triple transgenic AD (3xTg-AD) mice, with no change in beta amyloid and phospho-tau levels.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/enzimologia , Inibidores Enzimáticos/uso terapêutico , Proteínas Tirosina Fosfatases não Receptoras/antagonistas & inibidores , Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Animais , Benzotiepinas/farmacologia , Benzotiepinas/uso terapêutico , Domínio Catalítico , Morte Celular/efeitos dos fármacos , Córtex Cerebral/patologia , Transtornos Cognitivos/complicações , Transtornos Cognitivos/patologia , Cisteína/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/química , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Especificidade por Substrato/efeitos dos fármacos
6.
J Biomol Screen ; 19(7): 1024-34, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24598103

RESUMO

PERK is serine/threonine kinase localized to the endoplasmic reticulum (ER) membrane. PERK is activated and contributes to cell survival in response to a variety of physiological stresses that affect protein quality control in the ER, such as hypoxia, glucose depravation, increased lipid biosynthesis, and increased protein translation. Pro-survival functions of PERK are triggered by such stresses, suggesting that development of small-molecule inhibitors of PERK may be efficacious in a variety of disease scenarios. Hence, we have conducted a detailed enzymatic characterization of the PERK kinase to develop a high-throughput-screening assay (HTS) that will permit the identification of small-molecule PERK inhibitors. In addition to establishing the K(m) of PERK for both its primary substrate, eIF2α, and for adenosine triphosphate, further mechanistic studies revealed that PERK targets its substrate via either a random/steady-state ordered mechanism. For HTS, we developed a time-resolved fluorescence resonance energy transfer-based assay that yielded a robust Z' factor and percent coefficient of variation value, enabling the successful screening of 79,552 compounds. This approach yielded one compound that exhibited good in vitro and cellular activity. These results demonstrate the validity of this screen and represent starting points for drug discovery efforts.


Assuntos
Descoberta de Drogas/métodos , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala/métodos , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/química , Animais , Simulação por Computador , Desenho de Fármacos , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/química , Fibroblastos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Camundongos , Fenótipo , Fosforilação , Transdução de Sinais
7.
J Clin Invest ; 124(3): 1255-67, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24569372

RESUMO

Glial glutamate transporter EAAT2 plays a major role in glutamate clearance in synaptic clefts. Several lines of evidence indicate that strategies designed to increase EAAT2 expression have potential for preventing excitotoxicity, which contributes to neuronal injury and death in neurodegenerative diseases. We previously discovered several classes of compounds that can increase EAAT2 expression through translational activation. Here, we present efficacy studies of the compound LDN/OSU-0212320, which is a pyridazine derivative from one of our lead series. In a murine model, LDN/OSU-0212320 had good potency, adequate pharmacokinetic properties, no observed toxicity at the doses examined, and low side effect/toxicity potential. Additionally, LDN/OSU-0212320 protected cultured neurons from glutamate-mediated excitotoxic injury and death via EAAT2 activation. Importantly, LDN/OSU-0212320 markedly delayed motor function decline and extended lifespan in an animal model of amyotrophic lateral sclerosis (ALS). We also found that LDN/OSU-0212320 substantially reduced mortality, neuronal death, and spontaneous recurrent seizures in a pilocarpine-induced temporal lobe epilepsy model. Moreover, our study demonstrated that LDN/OSU-0212320 treatment results in activation of PKC and subsequent Y-box-binding protein 1 (YB-1) activation, which regulates activation of EAAT2 translation. Our data indicate that the use of small molecules to enhance EAAT2 translation may be a therapeutic strategy for the treatment of neurodegenerative diseases.


Assuntos
Transportador 2 de Aminoácido Excitatório/genética , Fármacos Neuroprotetores/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Piridazinas/farmacologia , Piridinas/farmacologia , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/patologia , Animais , Células do Corno Anterior/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Linhagem Celular , Técnicas de Cocultura , Ativação Enzimática/efeitos dos fármacos , Transportador 2 de Aminoácido Excitatório/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Mutação de Sentido Incorreto , Fármacos Neuroprotetores/farmacocinética , Pilocarpina , Proteína Quinase C/metabolismo , Piridazinas/farmacocinética , Piridinas/farmacocinética , Ratos , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/patologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Distribuição Tecidual , Fatores de Transcrição/metabolismo
8.
Am J Neurodegener Dis ; 1(1): 75-87, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22822474

RESUMO

The amyloid ß precursor protein (APP) is a single-pass transmembrane glycoprotein that is ubiquitously expressed in many cell types, including neurons. Amyloidogenic processing of APP by ß- and γ-secretases leads to the production of amyloid-ß (Aß) peptides that can oligomerize and aggregate into amyloid plaques, a characteristic hallmark of Alzheimer's disease (AD) brains. Multiple reports suggest that dimerization of APP may play a role in Aß production; however, it is not yet clear whether APP dimers increase or decrease Aß and the mechanism is not fully understood. To better understand the relationship between APP dimerization and production of Aß, a high throughput screen for small molecule modulators of APP dimerization was conducted using APP-Firefly luciferase enzyme complementation to detect APP dimerization. Selected modulators identified from a compound library of 77,440 compounds were tested for their effects on Aß generation. Two molecules that inhibited APP dimerization produced a reduction in Aß levels as measured by ELISA. The inhibitors did not change sAPPα or γ-CTF levels, but lowered sAPPß levels, suggesting that blocking the dimerization is preventing the cleavage by ß-secretase in the amyloidogenic processing of APP. To our knowledge, this is the first High Throughput Screen (HTS) effort to identify small molecule modulators of APP dimerization. Inhibition of APP dimerization has previously been suggested as a therapeutic target in AD. The findings reported here further support that modulation of APP dimerization may be a viable means of reducing the production of Aß.

9.
J Biomol Screen ; 17(3): 314-26, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22140121

RESUMO

Aberrant protein-protein interactions are attractive drug targets in a variety of neurodegenerative diseases due to the common pathology of accumulation of protein aggregates. In amyotrophic lateral sclerosis, mutations in SOD1 cause the formation of aggregates and inclusions that may sequester other proteins and disrupt cellular processes. It has been demonstrated that mutant SOD1, but not wild-type SOD1, interacts with the axonal transport motor dynein and that this interaction contributes to motor neuron cell death, suggesting that disrupting this interaction may be a potential therapeutic target. However, it can be challenging to configure a high-throughput screening (HTS)-compatible assay to detect inhibitors of a protein-protein interaction. Here we describe the development and challenges of an HTS for small-molecule inhibitors of the mutant SOD1-dynein interaction. We demonstrate that the interaction can be formed by coexpressing the A4V mutant SOD1 and dynein intermediate complex in cells and that this interaction can be disrupted by compounds added to the cell lysates. Finally, we show that some of the compounds identified from a pilot screen to inhibit the protein-protein interaction with this method specifically disrupt the interaction between the dynein complex and mtSOD1 but not the dynein complex itself when applied to live cells.


Assuntos
Dineínas/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Linhagem Celular , Inibidores Enzimáticos , Glutationa Transferase , Células HEK293 , Humanos , Estrutura Quaternária de Proteína , Superóxido Dismutase/antagonistas & inibidores , Superóxido Dismutase-1
10.
Anal Biochem ; 404(2): 186-92, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20566370

RESUMO

LRRK2 is a large and complex protein that possesses kinase and GTPase activities and has emerged as the most relevant player in PD pathogenesis possibly through a toxic gain-of-function mechanism. Kinase activity is a critical component of LRRK2 function and represents a viable target for drug discovery. We now report the development of a mechanism-based TR-FRET assay for the LRRK2 kinase activity using full-length LRRK2. In this assay, PLK-peptide was chosen as the phosphoryl acceptor. A combination of steady-state kinetic studies and computer simulations was used to calculate the initial concentrations of ATP and PLK-peptide to generate a steady-state situation that favors the identification of ATP noncompetitive inhibitors. The assay was also run in the absence of GTP. Under these conditions, the assay was sensitive to inhibitors that directly interact with the kinase domain and those that modulate the kinase activity by directly interacting with other domains including the GTPase domain. The assay was optimized and used to robustly evaluate our compound library in a 384-well format. An inhibitor identified through the screen was further characterized as a noncompetitive inhibitor with both ATP and PLK-peptide and showed similar inhibition against LRRK2 WT and the mutant G2019S.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Ciclo Celular/química , Descoberta de Drogas , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Mutagênese Sítio-Dirigida , Peptídeos/química , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/química , Quinase 1 Polo-Like
11.
J Biomol Screen ; 15(6): 653-62, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20508255

RESUMO

Excitotoxicity has been implicated as the mechanism of neuronal damage resulting from acute insults such as stroke, epilepsy, and trauma, as well as during the progression of adult-onset neurodegenerative disorders such as Alzheimer's disease and amyotrophic lateral sclerosis (ALS). Excitotoxicity is defined as excessive exposure to the neurotransmitter glutamate or overstimulation of its membrane receptors, leading to neuronal injury or death. One potential approach to protect against excitotoxic neuronal damage is enhanced glutamate reuptake. The glial glutamate transporter EAAT2 is the quantitatively dominant glutamate transporter and plays a major role in clearance of glutamate. Expression of EAAT2 protein is highly regulated at the translational level. In an effort to identify compounds that can induce translation of EAAT2 transcripts, a cell-based enzyme-linked immunosorbent assay was developed using a primary astrocyte line stably transfected with a vector designed to identify modulators of EAAT2 translation. This assay was optimized for high-throughput screening, and a library of approximately 140,000 compounds was tested. In the initial screen, 293 compounds were identified as hits. These 293 hits were retested at 3 concentrations, and a total of 61 compounds showed a dose-dependent increase in EAAT2 protein levels. Selected compounds were tested in full 12-point dose-response experiments in the screening assay to assess potency as well as confirmed by Western blot, immunohistochemistry, and glutamate uptake assays to evaluate the localization and function of the elevated EAAT2 protein. These hits provide excellent starting points for developing therapeutic agents to prevent excitotoxicity.


Assuntos
Transportador 2 de Aminoácido Excitatório/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Neuroglia/metabolismo , Neurotoxinas/toxicidade , Biossíntese de Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/farmacologia , Regiões 5' não Traduzidas/genética , Ensaio de Imunoadsorção Enzimática , Transportador 2 de Aminoácido Excitatório/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes
12.
Bioorg Med Chem Lett ; 19(21): 6122-6, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19783434

RESUMO

A structure-activity relationship study for a 2-chloroanilide derivative of pyrazolo[1,5-a]pyridine revealed that increased EphB3 kinase inhibitory activity could be accomplished by retaining the 2-chloroanilide and introducing a phenyl or small electron donating substituents to the 5-position of the pyrazolo[1,5-a]pyridine. In addition, replacement of the pyrazolo[1,5-a]pyridine with imidazo[1,2-a]pyridine was well tolerated and resulted in enhanced mouse liver microsome stability. The structure-activity relationship for EphB3 inhibition of both heterocyclic series was similar. Kinase inhibitory activity was also demonstrated for representative analogs in cell culture. An analog (32, LDN-211904) was also profiled for inhibitory activity against a panel of 288 kinases and found to be quite selective for tyrosine kinases. Overall, these studies provide useful molecular probes for examining the in vitro, cellular and potentially in vivo kinase-dependent function of EphB3 receptor.


Assuntos
Imidazóis/química , Inibidores de Proteínas Quinases/química , Pirazóis/química , Piridinas/química , Receptor EphB3/antagonistas & inibidores , Animais , Linhagem Celular , Humanos , Imidazóis/síntese química , Imidazóis/farmacologia , Camundongos , Microssomos Hepáticos/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/síntese química , Pirazóis/farmacologia , Piridinas/síntese química , Piridinas/farmacologia , Receptor EphB3/metabolismo , Relação Estrutura-Atividade
13.
J Mol Neurosci ; 31(1): 23-35, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17416967

RESUMO

Ceramide is a bioactive sphingolipid that can prevent calpain activation and beta-amyloid (A beta) neurotoxicity in cortical neurons. Recent evidence supports A beta induction of a calpain-dependent cleavage of the cyclin-dependent kinase 5 (cdk5) regulatory protein p35 that contributes to tau hyperphosphorylation and neuronal death. Using cortical neurons isolated from wild-type and p35 knockout mice, we investigated whether ceramide required p35/cdk5 to protect against A beta-induced cell death and tau phosphorylation. Ceramide inhibited A beta-induced calpain activation and cdk5 activity in wild-type neurons and protected against neuronal death and tau hyperphosphorylation. Interestingly, A beta also increased cdk5 activity in p35-/- neurons, suggesting that the alternate cdk5 regulatory protein, p39, might mediate this effect. In p35 null neurons, ceramide blocked A beta-induced calpain activation but did not inhibit cdk5 activity or cell death. However, ceramide blocked tau hyperphosphorylation potentially via inhibition of glycogen synthase kinase-3beta. These data suggest that ceramide can regulate A beta cell toxicity in a p35/cdk5-dependent manner.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Morte Celular/fisiologia , Ceramidas/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas tau/metabolismo , Animais , Calpaína/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Ativação Enzimática , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/metabolismo , Fosforilação
14.
J Mol Neurosci ; 28(2): 111-23, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16679552

RESUMO

In vitro studies designed to probe the cellular mechanisms underlying beta-amyloid (Abeta) toxicity in neurons have implicated several processes, including hyperphosphorylation of the microtubule (MT)-associated protein tau, loss of MT stability, and increased cytosolic calcium levels. Given that Alzheimer's disease involves accumulation of aggregates of two different proteins, the potential involvement of the unfolded protein response (UPR) and endoplasmic reticulum (ER) dysfunction has been suggested to lead to cell death. The relationship between these apparently divergent factors and pathways in Abeta toxicity is still unclear. In these studies we investigated the relationship between MT stability and the ER stress response in primary neurons exposed to toxic Abeta peptides in culture. In addition, nocodazole (ND) was used to determine if direct disruption of MT organization activated the UPR. Pretreatment of neurons with MT-stabilizing drugs paclitaxel (Taxol) and epothilone A prevented the induction of three indicators of the UPR induced by Abeta, ND, and thapsigargin, a compound known to inhibit the sarco-ER Ca(2+)-ATPase and deplete ER calcium stores, resulting in initiation of the UPR. In addition, treatment with MT-stabilizing drugs blocked cell death and the cytoskeletal disorganization induced by these insults. The results suggest that loss of cytoskeletal integrity is a very early step in the response to a variety of toxic stimuli and that preservation of MT stability might be important in preventing the induction of ER dysfunction and subsequent cell death by Abeta in neurons.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Citoesqueleto/metabolismo , Retículo Endoplasmático/metabolismo , Neurônios/metabolismo , Estresse Oxidativo , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer , Animais , Antineoplásicos/farmacologia , Células Cultivadas , Citoesqueleto/efeitos dos fármacos , Epotilonas/farmacologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Chaperonas Moleculares/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Nocodazol/farmacologia , Paclitaxel/farmacologia , Fosforilação , Ratos , Tapsigargina/farmacologia , Moduladores de Tubulina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...