Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Coll Cardiol ; 70(10): 1232-1244, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28859786

RESUMO

BACKGROUND: After myocardial infarction (MI), mitral valve (MV) tethering stimulates adaptive leaflet growth, but counterproductive leaflet thickening and fibrosis augment mitral regurgitation (MR), doubling heart failure and mortality. MV fibrosis post-MI is associated with excessive endothelial-to-mesenchymal transition (EMT), driven by transforming growth factor (TGF)-ß overexpression. In vitro, losartan-mediated TGF-ß inhibition reduces EMT of MV endothelial cells. OBJECTIVES: This study tested the hypothesis that profibrotic MV changes post-MI are therapeutically accessible, specifically by losartan-mediated TGF-ß inhibition. METHODS: The study assessed 17 sheep, including 6 sham-operated control animals and 11 with apical MI and papillary muscle retraction short of producing MR; 6 of the 11 were treated with daily losartan, and 5 were untreated, with flexible epicardial mesh comparably limiting left ventricular (LV) remodeling. LV volumes, tethering, and MV area were quantified by using three-dimensional echocardiography at baseline and at 60 ± 6 days, and excised leaflets were analyzed by histopathology and flow cytometry. RESULTS: Post-MI LV dilation and tethering were comparable in the losartan-treated and untreated LV constraint sheep. Telemetered sensors (n = 6) showed no significant losartan-induced changes in arterial pressure. Losartan strongly reduced leaflet thickness (0.9 ± 0.2 mm vs. 1.6 ± 0.2 mm; p < 0.05; 0.4 ± 0.1 mm sham animals), TGF-ß, and downstream phosphorylated extracellular-signal-regulated kinase and EMT (27.2 ± 12.0% vs. 51.6 ± 11.7% α-smooth muscle actin-positive endothelial cells, p < 0.05; 7.2 ± 3.5% sham animals), cellular proliferation, collagen deposition, endothelial cell activation (vascular cell adhesion molecule-1 expression), neovascularization, and cells positive for cluster of differentiation (CD) 45, a hematopoietic marker associated with post-MI valve fibrosis. Leaflet area increased comparably (17%) in constrained and losartan-treated sheep. CONCLUSIONS: Profibrotic changes of tethered MV leaflets post-MI can be modulated by losartan without eliminating adaptive growth. Understanding the cellular and molecular mechanisms could provide new opportunities to reduce ischemic MR.


Assuntos
Losartan/farmacologia , Insuficiência da Valva Mitral/diagnóstico , Valva Mitral/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Modelos Animais de Doenças , Ecocardiografia Tridimensional , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fibrose , Humanos , Valva Mitral/diagnóstico por imagem , Insuficiência da Valva Mitral/etiologia , Insuficiência da Valva Mitral/fisiopatologia , Infarto do Miocárdio/complicações , Infarto do Miocárdio/fisiopatologia , Músculos Papilares/diagnóstico por imagem , Músculos Papilares/efeitos dos fármacos , Ovinos , Fator de Crescimento Transformador beta/metabolismo , Remodelação Ventricular
2.
Circ Res ; 119(11): 1215-1225, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27750208

RESUMO

RATIONALE: Ischemic mitral regurgitation, a complication after myocardial infarction (MI), induces adaptive mitral valve (MV) responses that may be initially beneficial but eventually lead to leaflet fibrosis and MV dysfunction. We sought to examine the MV endothelial response and its potential contribution to ischemic mitral regurgitation. OBJECTIVE: Endothelial, interstitial, and hematopoietic cells in MVs from post-MI sheep were quantified. MV endothelial CD45, found post MI, was analyzed in vitro. METHODS AND RESULTS: Ovine MVs, harvested 6 months after inferior MI, showed CD45, a protein tyrosine phosphatase, colocalized with von Willebrand factor, an endothelial marker. Flow cytometry of MV cells revealed significant increases in CD45+ endothelial cells (VE-cadherin+/CD45+/α-smooth muscle actin [SMA]+ and VE-cadherin+/CD45+/αSMA- cells) and possible fibrocytes (VE-cadherin-/CD45+/αSMA+) in inferior MI compared with sham-operated and normal sheep. CD45+ cells correlated with MV fibrosis and mitral regurgitation severity. VE-cadherin+/CD45+/αSMA+ cells suggested that CD45 may be linked to endothelial-to-mesenchymal transition (EndMT). MV endothelial cells treated with transforming growth factor-ß1 to induce EndMT expressed CD45 and fibrosis markers collagen 1 and 3 and transforming growth factor-ß1 to 3, not observed in transforming growth factor-ß1-treated arterial endothelial cells. A CD45 protein tyrosine phosphatase inhibitor blocked induction of EndMT and fibrosis markers and inhibited EndMT-associated migration of MV endothelial cells. CONCLUSIONS: MV endothelial cells express CD45, both in vivo post MI and in vitro in response to transforming growth factor-ß1. A CD45 phosphatase inhibitor blocked hallmarks of EndMT in MV endothelial cells. These results point to a novel, functional requirement for CD45 phosphatase activity in EndMT. The contribution of CD45+ endothelial cells to MV adaptation and fibrosis post MI warrants investigation.


Assuntos
Células Endoteliais/metabolismo , Antígenos Comuns de Leucócito/biossíntese , Valva Mitral/citologia , Valva Mitral/metabolismo , Infarto do Miocárdio/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica , Antígenos Comuns de Leucócito/genética , Infarto do Miocárdio/genética , Ovinos
3.
J Am Coll Cardiol ; 67(3): 275-87, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26796392

RESUMO

BACKGROUND: In patients with myocardial infarction (MI), leaflet tethering by displaced papillary muscles induces mitral regurgitation (MR), which doubles mortality. Mitral valves (MVs) are larger in such patients but fibrosis sets in counterproductively. The investigators previously reported that experimental tethering alone increases mitral valve area in association with endothelial-to-mesenchymal transition. OBJECTIVES: The aim of this study was to explore the clinically relevant situation of tethering and MI, testing the hypothesis that ischemic milieu modifies mitral valve adaptation. METHODS: Twenty-three adult sheep were examined. Under cardiopulmonary bypass, the papillary muscle tips in 6 sheep were retracted apically to replicate tethering, short of producing MR (tethered alone). Papillary muscle retraction was combined with apical MI created by coronary ligation in another 6 sheep (tethered plus MI), and left ventricular remodeling was limited by external constraint in 5 additional sheep (left ventricular constraint). Six sham-operated sheep were control subjects. Diastolic mitral valve surface area was quantified by 3-dimensional echocardiography at baseline and after 58 ± 5 days, followed by histopathology and flow cytometry of excised leaflets. RESULTS: Tethered plus MI leaflets were markedly thicker than tethered-alone valves and sham control subjects. Leaflet area also increased significantly. Endothelial-to-mesenchymal transition, detected as α-smooth muscle actin-positive endothelial cells, significantly exceeded that in tethered-alone and control valves. Transforming growth factor-ß, matrix metalloproteinase expression, and cellular proliferation were markedly increased. Uniquely, tethering plus MI showed endothelial activation with vascular adhesion molecule expression, neovascularization, and cells positive for CD45, considered a hematopoietic cell marker. Tethered plus MI findings were comparable with external ventricular constraint. CONCLUSIONS: MI altered leaflet adaptation, including a profibrotic increase in valvular cell activation, CD45-positive cells, and matrix turnover. Understanding cellular and molecular mechanisms underlying leaflet adaptation and fibrosis could yield new therapeutic opportunities for reducing ischemic MR.


Assuntos
Insuficiência da Valva Mitral , Valva Mitral , Infarto do Miocárdio , Músculos Papilares/patologia , Adaptação Fisiológica , Animais , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Ecocardiografia Tridimensional/métodos , Transição Epitelial-Mesenquimal/fisiologia , Metaloproteinases da Matriz/metabolismo , Valva Mitral/diagnóstico por imagem , Valva Mitral/fisiopatologia , Insuficiência da Valva Mitral/etiologia , Insuficiência da Valva Mitral/metabolismo , Insuficiência da Valva Mitral/patologia , Insuficiência da Valva Mitral/fisiopatologia , Infarto do Miocárdio/complicações , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Ovinos , Fator de Crescimento Transformador beta/metabolismo , Remodelação Ventricular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...