Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 248: 119237, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33307349

RESUMO

In this work, the optical properties of Rhodamine B (RdB) are investigated in the attendance of various red blood cells (RBCs). RdB fluorophores, as biological markers, is excited using SHG-CW Nd:YAG laser at 532 nm. In fact, the addition of biomolecules of interest to the reference fluorophore notably changes the fluorescence properties of the suspension. Here, laser induced fluorescence (LIF) spectrophotometry based on Stern-Volmer quenching formalism and field emission scanning electron microscope (FESEM) are employed here. According to the given fluorescence spectra, the spectral shift of emissions as well as quenching coefficients are assessed subsequently. The Stern-Volmer formalism is used to determine the quenching coefficients. In fact, RdB + RBCs suspensions contain a plenty of bioconjugates leading to the signal reduction and notable red shift in RdB fluorescence emissions. Furthermore, it is demonstrated that the positive blood type RBCs exhibit the higher quenching coefficients and the larger red shifts against those of negative blood types. This mainly arises from the nature of specific sugar antigens available on the RBC membranes as to N-acetylgalactosamine and galactose attached to the O-antigen terminal would enhance further quenching of the species. Moreover, a significant correlation appears between Stern-Volmer coefficients and the corresponding RBCs. In fact, distinct discrepancy takes place in quenching coefficients in terms various positive/negative blood types to envisage a facile method of blood typing.


Assuntos
Eritrócitos , Corantes Fluorescentes , Fluorescência , Rodaminas , Espectrometria de Fluorescência
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 239: 118468, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32470806

RESUMO

In this work, the fluorescence properties of Phycocyanin (PC) and the corresponding quenching effects are investigated in attendance of human serum albumin (HSA). At first, PC is excited at 532 nm using CW SHG Nd:YAG laser, then the emission wavelength, Stokes shift, quantum yield, extinction constant and self-quenching coefficient are obtained based on the modified Beer-Lambert equation. It is shown that a notable red shift appears in terms of PC concentration. According to the fluorescence spectra, the addition of HSA in PC solution leads to a significant reduction in the fluorescence signal via quenching events, however a lucid blue shift takes place in the same time. Stern-Volmer formalism is used to determine the quenching constant (KS), the number of binding sites (n) between PC and HSA as well as the association constant Ka for the purpose of facile transportation to the target in the context of drug delivery. Eventually, temperature dependent coefficients and corresponding spectral shifts are investigated over a wide range of temperatures at a couple of distinct PC concentrations to attest the dominant static quenching takes place. The rate of conjugate formations elevates at low temperatures leading to a certain blue shift. Furthermore, large KS is measured in the course of signal reduction, particularly at low PC populations. In fact, PC conjugation to HSA is essential interaction to enhance chemo drug transportation. Here, at the body temperature, the quenching coefficient decreases to facilitate the drug release. Moreover, the spectral shift of fluorescence emission can be useful for simultaneous monitoring and drug delivery treatment.


Assuntos
Ficocianina , Albumina Sérica , Sítios de Ligação , Humanos , Ligação Proteica , Albumina Sérica/metabolismo , Albumina Sérica Humana , Espectrometria de Fluorescência
3.
Water Sci Technol ; 74(6): 1469-1483, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27685976

RESUMO

Two non-ionic and hydrophilic surfactant additives, Tetronic-1107 and Triton X-100, were added to poly(vinyl chloride)/NMP polymeric solution to prepare ultrafiltration membranes via immersion precipitation. Surfactants at three different weight percentages up to 6 wt% were added, and the fabricated membranes were characterized and their performance for water treatment in the presence of bovine serum albumin (BSA) as a foulant was assessed. The scanning electron microscopy images indicated remarkable changes in morphology due to higher thermodynamic instability after surfactant addition. The membranes are more porous with more macro-voids in the sub-layer. Plus, the membranes become more hydrophilic. Water flux increases for the modified membranes by nearly two times and the ability of membranes for flux recovery increases from 66% to over 83%. BSA rejection reduces slightly with the addition of surfactants, however this parameter is still almost over 90% for the membranes with the highest amount of surfactants.


Assuntos
Incrustação Biológica/prevenção & controle , Etilenodiaminas , Membranas Artificiais , Octoxinol , Cloreto de Polivinila , Ultrafiltração/instrumentação , Polímeros , Soroalbumina Bovina/química , Soluções , Tensoativos , Ultrafiltração/métodos , Poluentes Químicos da Água/química , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA