Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 362: 142788, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977250

RESUMO

To optimize the ultraviolet (UV) water disinfection process, it is crucial to determine the ideal geometric dimensions of a corresponding model that enhance performance while minimizing the impact of uncertain photoreactor inputs. As water treatment directly affects people's lives, it is crucial to eliminate the risks associated with the non-ideal performance of disinfection photoreactors. Input uncertainties greatly affect photoreactor performance, making it essential to develop a robust optimization algorithm in advance to mitigate these effects and minimize the physical and financial resources required for constructing the photoreactors. In the suggested algorithm, a two-objective genetic algorithm is integrated with a non-intrusive polynomial chaos expansion (PCE) technique. Additionally, the Sobol sampling method is employed to select the necessary samples for understanding the system's behavior. An artificial neural network surrogate model is trained using sufficient data points derived from computational fluid dynamics (CFD) simulations. A novel type of UV photoreactors working based on exterior reflectors is chosen to optimize the process with three uncertain input parameters, including UV lamp power, UV transmittance of water, and diffusive fraction of the reflective surface. In addition, four geometrical design variables are considered to find the optimal configuration of the photoreactor. The standard deviation (SD) and the reciprocal of log reduction value (LRV) are set as the objective functions, calculated using PCE. The optimal design provides a LRV of 3.95 with SD of 0.2. The coefficient of variation (CoV) of the model significantly declines up to 7%, indicating the decreased sensitivity of the photoreactor to the input uncertainties. Additionally, it is discovered that the robust model exhibits minimal sensitivity to changes in reflectivity in various flow rates, and its output variability aligns with the SD obtained through robust optimization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...