Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(5): 324, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724533

RESUMO

Severe aplastic anemia (SAA) is a rare, fatal disease characterized by severe cytopenias and loss of hematopoietic stem cells (HSCs). Immune-mediated destruction and inflammation are known drivers of SAA, however, the underlying mechanisms driving persistent inflammation are unknown. Current treatments for SAA rely on immunosuppressive therapies or HSC transplantation, however, these treatments are not always effective. Using an established mouse model of SAA, we observed a significant increase in apoptotic cells within the bone marrow (BM) and impaired efferocytosis in SAA mice, relative to radiation controls. Single-cell transcriptomic analysis revealed heterogeneity among BM monocytes and unique populations emerged during SAA characterized by increased inflammatory signatures and significantly increased expression of Sirpa and Cd47. CD47, a "don't eat me" signal, was increased on both live and apoptotic BM cells, concurrent with markedly increased expression of signal regulatory protein alpha (SIRPα) on monocytes. Functionally, SIRPα blockade improved cell clearance and reduced accumulation of CD47-positive apoptotic cells. Lipidomic analysis revealed a reduction in the precursors of specialized pro-resolving lipid mediators (SPMs) and increased prostaglandins in the BM during SAA, indicative of impaired inflammation resolution. Specifically, 18-HEPE, a precursor of E-series resolvins, was significantly reduced in SAA-induced mice relative to radiation controls. Treatment of SAA mice with Resolvin E1 (RvE1) improved efferocytic function, BM cellularity, platelet output, and survival. Our data suggest that impaired efferocytosis and inflammation resolution contributes to SAA progression and demonstrate that SPMs, such as RvE1, offer new and/or complementary treatments for SAA that do not rely on immune suppression.


Assuntos
Anemia Aplástica , Antígeno CD47 , Ácido Eicosapentaenoico , Animais , Anemia Aplástica/patologia , Camundongos , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Antígeno CD47/metabolismo , Antígeno CD47/genética , Apoptose/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Monócitos/metabolismo , Monócitos/efeitos dos fármacos , Inflamação/patologia , Masculino , Eferocitose
2.
bioRxiv ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36909559

RESUMO

Current treatments for severe aplastic anemia (SAA) rely on hematopoietic stem cell (HSC) transplantation and immunosuppressive therapies, however these treatments are not always effective. While immune-mediated destruction and inflammation are known drivers of SAA, the underlying mechanisms that lead to persistent inflammation are unknown. Using an established mouse model of SAA, we observed a significant increase in apoptotic cells within the bone marrow (BM) and demonstrate impaired efferocytosis in SAA mice, as compared to radiation controls. Single-cell transcriptomic analysis revealed heterogeneity among BM monocytes and unique populations emerged during SAA characterized by increased inflammatory signatures and significantly increased expression of Sirpa and Cd47. CD47, a "don't eat me" signal, was increased on both live and apoptotic BM cells, concurrent with markedly increased expression of signal regulatory protein alpha (SIRPα) on monocytes. Functionally, SIRPα blockade improved cell clearance and reduced accumulation of CD47-positive apoptotic cells. Lipidomic analysis revealed a reduction in the precursors of specialized pro-resolving lipid mediators (SPMs) and increased prostaglandins in the BM during SAA, indicative of impaired inflammation resolution. Specifically, 18-HEPE, a precursor of E-series resolvins, was significantly reduced in SAA-induced mice relative to radiation controls. Treatment of SAA mice with Resolvin E1 (RvE1) improved efferocytic function, BM cellularity, platelet output, and survival. Our data suggest that impaired efferocytosis and inflammation resolution contributes to SAA progression and demonstrate that SPMs, such as RvE1, offer new and/or complementary treatments for SAA that do not rely on immune suppression.

3.
J Immunol ; 207(7): 1812-1823, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34462312

RESUMO

Radiation is associated with tissue damage and increased risk of atherosclerosis, but there are currently no treatments and a very limited mechanistic understanding of how radiation impacts tissue repair mechanisms. We uncovered that radiation significantly delayed temporal resolution programs that were associated with decreased efferocytosis in vivo. Resolvin D1 (RvD1), a known proresolving ligand, promoted swift resolution and restored efferocytosis in sublethally irradiated mice. Irradiated macrophages exhibited several features of senescence, including increased expression of p16INK4A and p21, heightened levels of SA-ß-gal, COX-2, several proinflammatory cytokines/chemokines, and oxidative stress (OS) in vitro, and when transferred to mice, they exacerbated inflammation in vivo. Mechanistically, heightened OS in senescent macrophages led to impairment in their ability to carry out efficient efferocytosis, and treatment with RvD1 reduced OS and improved efferocytosis. Sublethally irradiated Ldlr -/- mice exhibited increased plaque necrosis, p16INK4A cells, and decreased lesional collagen compared with nonirradiated controls, and treatment with RvD1 significantly reduced necrosis and increased lesional collagen. Removal of p16INK4A hematopoietic cells during advanced atherosclerosis with p16-3MR mice reduced plaque necrosis and increased production of key intraplaque-resolving mediators. Our results demonstrate that sublethal radiation drives macrophage senescence and efferocytosis defects and suggest that RvD1 may be a new therapeutic strategy to limit radiation-induced tissue damage.


Assuntos
Aterosclerose/imunologia , Doenças Cardiovasculares/imunologia , Ácidos Docosa-Hexaenoicos/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Macrófagos/imunologia , Lesões por Radiação/imunologia , Cicatrização/efeitos da radiação , Animais , Aterosclerose/genética , Células Cultivadas , Senescência Celular , Ciclo-Oxigenase 2/metabolismo , Genes p16 , Humanos , Inflamação , Camundongos , Camundongos Knockout , Radiação
4.
Leukemia ; 35(11): 3139-3151, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33744909

RESUMO

Severe aplastic anemia (SAA) is an acquired, T cell-driven bone marrow (BM) failure disease characterized by elevated interferon gamma (IFNγ), loss of hematopoietic stem cells (HSCs), and altered BM microenvironment, including dysfunctional macrophages (MΦs). T lymphocytes are therapeutic targets for treating SAA, however, the underlying mechanisms driving SAA development and how innate immune cells contribute to disease remain poorly understood. In a murine model of SAA, increased beta-chemokines correlated with disease and were partially dependent on IFNγ. IFNγ was required for increased expression of the chemokine receptor CCR5 on MΦs. CCR5 antagonism in murine SAA improved survival, correlating with increased platelets and significantly increased platelet-biased CD41hi HSCs. T cells are key drivers of disease, however, T cell-specific CCR5 expression and T cell-derived CCL5 were not necessary for disease. CCR5 antagonism reduced BM MΦs and diminished their expression of Tnf and Ccl5, correlating with reduced frequencies of IFNγ-secreting BM T cells. Mechanistically, CCR5 was intrinsically required for maintaining BM MΦs during SAA. Ccr5 expression was significantly increased in MΦs from aged mice and humans, relative to young counterparts. Our data identify CCR5 signaling as a key axis promoting the development of IFNγ-dependent BM failure, particularly relevant in aging where Ccr5 expression is elevated.


Assuntos
Envelhecimento , Anemia Aplástica/complicações , Transtornos da Insuficiência da Medula Óssea/patologia , Interferon gama/metabolismo , Macrófagos/imunologia , Receptores CCR5/fisiologia , Linfócitos T/imunologia , Anemia Aplástica/patologia , Animais , Transtornos da Insuficiência da Medula Óssea/etiologia , Transtornos da Insuficiência da Medula Óssea/metabolismo , Quimiocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Front Immunol ; 11: 1499, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849512

RESUMO

The bone marrow contains distinct cell types that work in coordination to generate blood and immune cells, and it is the primary residence of hematopoietic stem cells (HSCs) and more committed multipotent progenitors (MPPs). Even at homeostasis the bone marrow is a dynamic environment where billions of cells are generated daily to replenish short-lived immune cells and produce the blood factors and cells essential for hemostasis and oxygenation. In response to injury or infection, the marrow rapidly adapts to produce specific cell types that are in high demand revealing key insight to the inflammatory nature of "demand-adapted" hematopoiesis. Here we focus on the role that resident and monocyte-derived macrophages play in driving these hematopoietic programs and how macrophages impact HSCs and downstream MPPs. Macrophages are exquisite sensors of inflammation and possess the capacity to adapt to the environment, both promoting and restraining inflammation. Thus, macrophages hold great potential for manipulating hematopoietic output and as potential therapeutic targets in a variety of disease states where macrophage dysfunction contributes to or is necessary for disease. We highlight essential features of bone marrow macrophages and discuss open questions regarding macrophage function, their role in orchestrating demand-adapted hematopoiesis, and mechanisms whereby they regulate HSC function.


Assuntos
Medula Óssea/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Inflamação/imunologia , Macrófagos/fisiologia , Animais , Diferenciação Celular , Hematopoese , Transplante de Células-Tronco Hematopoéticas , Homeostase , Humanos , Estresse Oxidativo , Nicho de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...