Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 4(11): eaau0059, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30430134

RESUMO

We propose a novel mechanism of flat band formation based on the relative biasing of only one sublattice against other sublattices in a honeycomb lattice bilayer. The mechanism allows modification of the band dispersion from parabolic to "Mexican hat"-like through the formation of a flattened band. The mechanism is well applicable for bilayer graphene-both doped and undoped. By angle-resolved photoemission from bilayer graphene on SiC, we demonstrate the possibility of realizing this extremely flattened band (< 2-meV dispersion), which extends two-dimensionally in a k-space area around the K ¯ point and results in a disk-like constant energy cut. We argue that our two-dimensional flat band model and the experimental results have the potential to contribute to achieving superconductivity of graphene- or graphite-based systems at elevated temperatures.

2.
Phys Rev Lett ; 116(10): 106802, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-27015502

RESUMO

Using inelastic electron scattering in combination with dielectric theory simulations on differently prepared graphene layers on silicon carbide, we demonstrate that the coupling between the 2D plasmon of graphene and the surface optical phonon of the substrate cannot be quenched by modification of the interface via intercalation. The intercalation rather provides additional modes like, e.g., the silicon-hydrogen stretch mode in the case of hydrogen intercalation or the silicon-oxygen vibrations for water intercalation that couple to the 2D plasmons of graphene. Furthermore, in the case of bilayer graphene with broken inversion symmetry due to charge imbalance between the layers, we observe a similar coupling of the 2D plasmon to an internal infrared-active mode, the LO phonon mode. The coupling of graphene plasmons to vibrational modes of the substrate surface and internal infrared active modes is envisioned to provide an excellent tool for tailoring the plasmon band structure of monolayer and bilayer graphene for plasmonic devices such as plasmon filters or plasmonic waveguides. The rigidity of the effect furthermore suggests that it may be of importance for other 2D materials as well.

3.
Phys Rev Lett ; 108(24): 246104, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23004296

RESUMO

We explain the robust p-type doping observed for quasi-free-standing graphene on hexagonal silicon carbide by the spontaneous polarization of the substrate. This mechanism is based on a bulk property of SiC, unavoidable for any hexagonal polytype of the material and independent of any details of the interface formation. We show that sign and magnitude of the polarization are in perfect agreement with the doping level observed in the graphene layer. With this mechanism, models based on hypothetical acceptor-type defects as they are discussed so far are obsolete. The n-type doping of epitaxial graphene is explained conventionally by donorlike states associated with the buffer layer and its interface to the substrate that overcompensate the polarization doping.

4.
Nano Lett ; 12(5): 2470-4, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22519967

RESUMO

We show that in graphene epitaxially grown on SiC the Drude absorption is transformed into a strong terahertz plasmonic peak due to natural nanoscale inhomogeneities, such as substrate terraces and wrinkles. The excitation of the plasmon modifies dramatically the magneto-optical response and in particular the Faraday rotation. This makes graphene a unique playground for plasmon-controlled magneto-optical phenomena thanks to a cyclotron mass 2 orders of magnitude smaller than in conventional plasmonic materials such as noble metals.

5.
Phys Rev Lett ; 102(8): 086102, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19257757

RESUMO

We have studied friction and dissipation in single and bilayer graphene films grown epitaxially on SiC. The friction on SiC is greatly reduced by a single layer of graphene and reduced by another factor of 2 on bilayer graphene. The friction contrast between single and bilayer graphene arises from a dramatic difference in electron-phonon coupling, which we discovered by means of angle-resolved photoemission spectroscopy. Bilayer graphene as a lubricant outperforms even graphite due to reduced adhesion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...