Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 278: 120252, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37437702

RESUMO

Most neuroimaging techniques require the participant to remain still for reliable recordings to be made. Optically pumped magnetometer (OPM) based magnetoencephalography (OP-MEG) however, is a neuroimaging technique which can be used to measure neural signals during large participant movement (approximately 1 m) within a magnetically shielded room (MSR) (Boto et al., 2018; Seymour et al., 2021). Nevertheless, environmental magnetic fields vary both spatially and temporally and OPMs can only operate within a limited magnetic field range, which constrains participant movement. Here we implement real-time updates to electromagnetic coils mounted on-board of the OPMs, to cancel out the changing background magnetic fields. The coil currents were chosen based on a continually updating harmonic model of the background magnetic field, effectively implementing homogeneous field correction (HFC) in real-time (Tierney et al., 2021). During a stationary, empty room recording, we show an improvement in very low frequency noise of 24 dB. In an auditory paradigm, during participant movement of up to 2 m within a magnetically shielded room, introduction of the real-time correction more than doubled the proportion of trials in which no sensor saturated recorded outside of a 50 cm radius from the optimally-shielded centre of the room. The main advantage of such model-based (rather than direct) feedback is that it could allow one to correct field components along unmeasured OPM axes, potentially mitigating sensor gain and calibration issues (Borna et al., 2022).


Assuntos
Magnetoencefalografia , Dispositivos Eletrônicos Vestíveis , Humanos , Magnetoencefalografia/métodos , Movimento , Campos Magnéticos , Neuroimagem , Encéfalo
2.
Cereb Cortex ; 33(12): 7489-7499, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36928162

RESUMO

There is mounting evidence for predictive coding theory from computational, neuroimaging, and psychological research. However, there remains a lack of research exploring how predictive brain function develops across childhood. To address this gap, we used pediatric magnetoencephalography to record the evoked magnetic fields of 18 younger children (M = 4.1 years) and 19 older children (M = 6.2 years) as they listened to a 12-min auditory oddball paradigm. For each child, we computed a mismatch field "MMF": an electrophysiological component that is widely interpreted as a neural signature of predictive coding. At the sensor level, the older children showed significantly larger MMF amplitudes relative to the younger children. At the source level, the older children showed a significantly larger MMF amplitude in the right inferior frontal gyrus relative to the younger children, P < 0.05. No differences were found in 2 other key regions (right primary auditory cortex and right superior temporal gyrus) thought to be involved in mismatch generation. These findings support the idea that predictive brain function develops during childhood, with increasing involvement of the frontal cortex in response to prediction errors. These findings contribute to a deeper understanding of the brain function underpinning child cognitive development.


Assuntos
Córtex Auditivo , Magnetoencefalografia , Humanos , Criança , Adolescente , Magnetoencefalografia/métodos , Percepção Auditiva/fisiologia , Lobo Temporal , Desenvolvimento Infantil , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica/métodos
3.
Eur J Neurosci ; 56(10): 5836-5852, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36161675

RESUMO

Neural oscillations often occur as transient bursts with variable amplitude and frequency dynamics. Quantifying these effects is important for understanding brain-behaviour relationships, especially in continuous datasets. To robustly measure bursts, rhythmical periods of oscillatory activity must be separated from arrhythmical background 1/f activity, which is ubiquitous in electrophysiological recordings. The Better OSCillation (BOSC) framework achieves this by defining a power threshold above the estimated background 1/f activity, combined with a duration threshold. Here we introduce a modification to this approach called fBOSC, which uses a spectral parametrisation tool to accurately model background 1/f activity in neural data. fBOSC (which is openly available as a MATLAB toolbox) is robust to power spectra with oscillatory peaks and can also model non-linear spectra. Through a series of simulations, we show that fBOSC more accurately models the 1/f power spectrum compared with existing methods. fBOSC was especially beneficial where power spectra contained a 'knee' below ~.5-10 Hz, which is typical in neural data. We also found that, unlike other methods, fBOSC was unaffected by oscillatory peaks in the neural power spectrum. Moreover, by robustly modelling background 1/f activity, the sensitivity for detecting oscillatory bursts was standardised across frequencies (e.g., theta- and alpha-bands). Finally, using openly available resting state magnetoencephalography and intracranial electrophysiology datasets, we demonstrate the application of fBOSC for oscillatory burst detection in the theta-band. These simulations and empirical analyses highlight the value of fBOSC in detecting oscillatory bursts, including in datasets that are long and continuous with no distinct experimental trials.


Assuntos
Encéfalo , Magnetoencefalografia , Encéfalo/fisiologia , Fenômenos Eletrofisiológicos
4.
Brain Commun ; 4(1): fcab296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35169699

RESUMO

Visual snow refers to the persistent visual experience of static in the whole visual field of both eyes. It is often reported by patients with migraine and co-occurs with conditions such as tinnitus and tremor. The underlying pathophysiology of the condition is poorly understood. Previously, we hypothesized that visual snow syndrome may be characterized by disruptions to rhythmical activity within the visual system. To test this, data from 18 patients diagnosed with visual snow syndrome, and 16 matched controls, were acquired using magnetoencephalography. Participants were presented with visual grating stimuli, known to elicit decreases in alpha-band (8-13 Hz) power and increases in gamma-band power (40-70 Hz). Data were mapped to source-space using a beamformer. Across both groups, decreased alpha power and increased gamma power localized to early visual cortex. Data from the primary visual cortex were compared between groups. No differences were found in either alpha or gamma peak frequency or the magnitude of alpha power, p > 0.05. However, compared with controls, our visual snow syndrome cohort displayed significantly increased primary visual cortex gamma power, p = 0.035. This new electromagnetic finding concurs with previous functional MRI and PET findings, suggesting that in visual snow syndrome, the visual cortex is hyperexcitable. The coupling of alpha-phase to gamma amplitude within the primary visual cortex was also quantified. Compared with controls, the visual snow syndrome group had significantly reduced alpha-gamma phase-amplitude coupling, p < 0.05, indicating a potential excitation-inhibition imbalance in visual snow syndrome, as well as a potential disruption to top-down 'noise-cancellation' mechanisms. Overall, these results suggest that rhythmical brain activity in the primary visual cortex is both hyperexcitable and disorganized in visual snow syndrome, consistent with this being a condition of thalamocortical dysrhythmia.

5.
Neuroimage ; 247: 118834, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34933122

RESUMO

One of the primary technical challenges facing magnetoencephalography (MEG) is that the magnitude of neuromagnetic fields is several orders of magnitude lower than interfering signals. Recently, a new type of sensor has been developed - the optically pumped magnetometer (OPM). These sensors can be placed directly on the scalp and move with the head during participant movement, making them wearable. This opens up a range of exciting experimental and clinical opportunities for OPM-based MEG experiments, including paediatric studies, and the incorporation of naturalistic movements into neuroimaging paradigms. However, OPMs face some unique challenges in terms of interference suppression, especially in situations involving mobile participants, and when OPMs are integrated with electrical equipment required for naturalistic paradigms, such as motion capture systems. Here we briefly review various hardware solutions for OPM interference suppression. We then outline several signal processing strategies aimed at increasing the signal from neuromagnetic sources. These include regression-based strategies, temporal filtering and spatial filtering approaches. The focus is on the practical application of these signal processing algorithms to OPM data. In a similar vein, we include two worked-through experiments using OPM data collected from a whole-head sensor array. These tutorial-style examples illustrate how the steps for suppressing external interference can be implemented, including the associated data and code so that researchers can try the pipelines for themselves. With the popularity of OPM-based MEG rising, there will be an increasing need to deal with interference suppression. We hope this practical paper provides a resource for OPM-based MEG researchers to build upon.


Assuntos
Magnetoencefalografia/instrumentação , Neuroimagem/instrumentação , Algoritmos , Desenho de Equipamento , Movimentos da Cabeça , Humanos , Couro Cabeludo , Processamento de Sinais Assistido por Computador
6.
IEEE Trans Biomed Eng ; 69(2): 528-536, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34324421

RESUMO

BACKGROUND: Optically pumped magnetometers (OPMs) have made moving, wearable magnetoencephalography (MEG) possible. The OPMs typically used for MEG require a low background magnetic field to operate, which is achieved using both passive and active magnetic shielding. However, the background magnetic field is never truly zero Tesla, and so the field at each of the OPMs changes as the participant moves. This leads to position and orientation dependent changes in the measurements, which manifest as low frequency artefacts in MEG data. OBJECTIVE: We model the spatial variation in the magnetic field and use the model to predict the movement artefact found in a dataset. METHODS: We demonstrate a method for modelling this field with a triaxial magnetometer, then show that we can use the same technique to predict the movement artefact in a real OPM-based MEG (OP-MEG) dataset. RESULTS: Using an 86-channel OP-MEG system, we found that this modelling method maximally reduced the power spectral density of the data by 27.8 ± 0.6 dB at 0 Hz, when applied over 5 s non-overlapping windows. CONCLUSION: The magnetic field inside our state-of-the art magnetically shielded room can be well described by low-order spherical harmonic functions. We achieved a large reduction in movement noise when we applied this model to OP-MEG data. SIGNIFICANCE: Real-time implementation of this method could reduce passive shielding requirements for OP-MEG recording and allow the measurement of low-frequency brain activity during natural participant movement.


Assuntos
Campos Magnéticos , Magnetoencefalografia , Artefatos , Encéfalo , Humanos , Magnetoencefalografia/métodos
7.
Neuroimage ; 244: 118604, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34555493

RESUMO

Optically pumped magnetometer-based magnetoencephalography (OP-MEG) can be used to measure neuromagnetic fields while participants move in a magnetically shielded room. Head movements in previous OP-MEG studies have been up to 20 cm translation and ∼30° rotation in a sitting position. While this represents a step-change over stationary MEG systems, naturalistic head movement is likely to exceed these limits, particularly when participants are standing up. In this proof-of-concept study, we sought to push the movement limits of OP-MEG even further. Using a 90 channel (45-sensor) whole-head OP-MEG system and concurrent motion capture, we recorded auditory evoked fields while participants were: (i) sitting still, (ii) standing up and still, and (iii) standing up and making large natural head movements continuously throughout the recording - maximum translation 120 cm, maximum rotation 198°. Following pre-processing, movement artefacts were substantially reduced but not eliminated. However, upon utilisation of a beamformer, the M100 event-related field localised to primary auditory regions. Furthermore, the event-related fields from auditory cortex were remarkably consistent across the three conditions. These results suggest that a wide range of movement is possible with current OP-MEG systems. This in turn underscores the exciting potential of OP-MEG for recording neural activity during naturalistic paradigms that involve movement (e.g. navigation), and for scanning populations who are difficult to study with stationary MEG (e.g. young children).


Assuntos
Córtex Auditivo/fisiologia , Potenciais Evocados Auditivos/fisiologia , Magnetoencefalografia/métodos , Posição Ortostática , Adulto , Artefatos , Cabeça , Movimentos da Cabeça , Humanos , Masculino , Estudo de Prova de Conceito , Rotação
8.
Cognition ; 199: 104247, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32146171

RESUMO

Bilinguals have a remarkable ability to juggle two languages. A central question in the field is concerned with the control mechanisms that enable bilinguals to switch language with ease. Theoretical models and neuroimaging evidence suggest that a range of control processes are at play during language switching, and their underlying neural mechanisms are closely related to executive function. What remains unclear is when these control processes are engaged in language switching. In this study, we used magnetoencephalography (MEG) to examine the brain activity while unbalanced Mandarin-English bilinguals performed a digit-naming task with cued language switching. Following presentation of the language cue, an asymmetrical switch effect was observed in the left inferior frontal gyrus (IFG), where switch-related increase in evoked brain activity was larger for switching into the non-dominant language. Following presentation of the naming target, evoked brain activity in the right IFG was larger when naming was required in the non-dominant language compared to the dominant language. We conclude that control processes take place in two stages during language switching, with the left IFG resolving interference following cue presentation and the right IFG inhibiting competing labels following target presentation.


Assuntos
Função Executiva , Multilinguismo , Sinais (Psicologia) , Idioma , Magnetoencefalografia
9.
Neuroimage ; 216: 116414, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31794854

RESUMO

Naturalistic stimuli such as watching a movie while in the scanner provide an ecologically valid paradigm that has the potential of extracting valuable information on how the brain processes complex stimuli in realistic visual and auditory contexts. Naturalistic viewing is also easier to conduct with challenging participant groups including patients and children. Given the high temporal resolution of MEG, in the present study, we demonstrate how a short movie clip can be used to map distinguishable activation and connectivity dynamics underlying the processing of specific classes of visual stimuli such as face and hand manipulations, as well as contrasting activation dynamics for auditory words and non-words. MEG data were collected from 22 healthy volunteers (6 females, 3 left handed, mean age - 27.7 â€‹± â€‹5.28 years) during the presentation of naturalistic audiovisual stimuli. The MEG data were split into trials with the onset of the stimuli belonging to classes of interest (words, non-words, faces, hand manipulations). Based on the components of the averaged sensor ERFs time-locked to the visual and auditory stimulus onset, four and three time-windows, respectively, were defined to explore brain activation dynamics. Pseudo-Z, defined as the ratio of the source-projected time-locked power to the projected noise power for each vertex, was computed and used as a proxy of time-locked brain activation. Statistical testing using the mean-centered Partial Least Squares analysis indicated periods where a given visual or auditory stimuli had higher activation. Based on peak pseudo-Z differences between the visual conditions, time-frequency resolved analyses were performed to assess beta band desynchronization in motor-related areas, and inter-trial phase synchronization between face processing areas. Our results provide the first evidence that activation and connectivity dynamics in canonical brain regions associated with the processing of particular classes of visual and auditory stimuli can be reliably mapped using MEG during presentation of naturalistic stimuli. Given the strength of MEG for brain mapping in temporal and frequency domains, the use of naturalistic stimuli may open new techniques in analyzing brain dynamics during ecologically valid sensation and perception.


Assuntos
Encéfalo/fisiologia , Magnetoencefalografia/métodos , Filmes Cinematográficos , Rede Nervosa/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica/métodos , Adulto , Percepção Auditiva/fisiologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Feminino , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Estimulação Luminosa/métodos , Adulto Jovem
10.
Brain ; 142(10): 3294-3305, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31410480

RESUMO

Autism spectrum disorder is increasingly associated with atypical perceptual and sensory symptoms. Here we explore the hypothesis that aberrant sensory processing in autism spectrum disorder could be linked to atypical intra- (local) and interregional (global) brain connectivity. To elucidate oscillatory dynamics and connectivity in the visual domain we used magnetoencephalography and a simple visual grating paradigm with a group of 18 adolescent autistic participants and 18 typically developing control subjects. Both groups showed similar increases in gamma (40-80 Hz) and decreases in alpha (8-13 Hz) frequency power in occipital cortex. However, systematic group differences emerged when analysing intra- and interregional connectivity in detail. First, directed connectivity was estimated using non-parametric Granger causality between visual areas V1 and V4. Feedforward V1-to-V4 connectivity, mediated by gamma oscillations, was equivalent between autism spectrum disorder and control groups, but importantly, feedback V4-to-V1 connectivity, mediated by alpha (8-13 Hz) oscillations, was significantly reduced in the autism spectrum disorder group. This reduction was positively correlated with autistic quotient scores, consistent with an atypical visual hierarchy in autism, characterized by reduced top-down modulation of visual input via alpha-band oscillations. Second, at the local level in V1, coupling of alpha-phase to gamma amplitude (alpha-gamma phase amplitude coupling) was reduced in the autism spectrum disorder group. This implies dysregulated local visual processing, with gamma oscillations decoupled from patterns of wider alpha-band phase synchrony (i.e. reduced phase amplitude coupling), possibly due to an excitation-inhibition imbalance. More generally, these results are in agreement with predictive coding accounts of neurotypical perception and indicate that visual processes in autism are less modulated by contextual feedback information.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Lobo Occipital/fisiologia , Percepção Visual/fisiologia , Adolescente , Ritmo alfa/fisiologia , Transtorno do Espectro Autista/metabolismo , Encéfalo/fisiologia , Conectoma/métodos , Eletroencefalografia/métodos , Feminino , Ritmo Gama/fisiologia , Substância Cinzenta/fisiologia , Humanos , Magnetoencefalografia/métodos , Masculino , Vias Neurais/fisiologia
11.
J Vis Exp ; (146)2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-31009000

RESUMO

Magnetoencephalography (MEG) is a non-invasive neuroimaging technique which directly measures magnetic fields produced by the electrical activity of the human brain. MEG is quiet and less likely to induce claustrophobia compared with magnetic resonance imaging (MRI). It is therefore a promising tool for investigating brain function in young children. However, analysis of MEG data from pediatric populations is often complicated by head movement artefacts which arise as a consequence of the requirement for a spatially-fixed sensor array that is not affixed to the child's head. Minimizing head movements during MEG sessions can be particularly challenging as young children are often unable to remain still during experimental tasks. The protocol presented here aims to reduce head movement artefacts during pediatric MEG scanning. Prior to visiting the MEG laboratory, families are provided with resources that explain the MEG system and the experimental procedures in simple, accessible language. An MEG familiarization session is conducted during which children are acquainted with both the researchers and the MEG procedures. They are then trained to keep their head still whilst lying inside an MEG simulator. To help children feel at ease in the novel MEG environment, all of the procedures are explained through the narrative of a space mission. To minimize head movement due to restlessness, children are trained and assessed using fun and engaging experimental paradigms. In addition, children's residual head movement artefacts are compensated for during the data acquisition session using a real-time head movement tracking system. Implementing these child-friendly procedures is important for improving data quality, minimizing participant attrition rates in longitudinal studies, and ensuring that families have a positive research experience.


Assuntos
Encéfalo/fisiologia , Magnetoencefalografia/métodos , Artefatos , Pré-Escolar , Movimentos da Cabeça , Humanos , Masculino
13.
Front Neurosci ; 11: 487, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28919850

RESUMO

There is increasing interest in understanding how the phase and amplitude of distinct neural oscillations might interact to support dynamic communication within the brain. In particular, previous work has demonstrated a coupling between the phase of low frequency oscillations and the amplitude (or power) of high frequency oscillations during certain tasks, termed phase amplitude coupling (PAC). For instance, during visual processing in humans, PAC has been reliably observed between ongoing alpha (8-13 Hz) and gamma-band (>40 Hz) activity. However, the application of PAC metrics to electrophysiological data can be challenging due to numerous methodological issues and lack of coherent approaches within the field. Therefore, in this article we outline the various analysis steps involved in detecting PAC, using an openly available MEG dataset from 16 participants performing an interactive visual task. Firstly, we localized gamma and alpha-band power using the Fieldtrip toolbox, and extracted time courses from area V1, defined using a multimodal parcelation scheme. These V1 responses were analyzed for changes in alpha-gamma PAC, using four common algorithms. Results showed an increase in alpha (7-13 Hz)-gamma (40-100 Hz) PAC in response to the visual grating stimulus, though specific patterns of coupling were somewhat dependent upon the algorithm employed. Additionally, post-hoc analyses showed that these results were not driven by the presence of non-sinusoidal oscillations, and that trial length was sufficient to obtain reliable PAC estimates. Finally, throughout the article, methodological issues and practical guidelines for ongoing PAC research will be discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...