Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 30(4): 595-604, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30796621

RESUMO

Providing rapid and sensitive sample cleanup, sol-gel capillary microextraction (CME) is a form of solid phase microextraction (SPME). The capillary format of CME couples easily with mass spectrometry (MS) by employing sol-gel sorbent coatings in inexpensive fused silica capillaries. By leveraging the syringe pump and six-port valve readily available on the commercial MS, we can obviate the need for chromatography for samples as complex as urine in quantitative assays. Two different sol-gel materials were studied as microextraction sorbents: one with a single ligand of octadecyl (C18) and the other with a dual-ligand combination of C18 and phenyl (Phe) groups. The CME-MS method was optimized for flow rate and solvent desorption and studied for overall microextraction performance between the two sorbents studied. We extract illicit drugs including cocaine, heroin, amphetamine, methamphetamine, 3,4-methylenedioxymethamphetamine, and oxycodone, proving good run-to-run reproducibility (RSD% < 10%) and low detection limits (< 10 ng mL-1). The dual-ligand sorbent demonstrated superior performance due to typical hydrophobic properties of C18 as well as potential π-π interactions of the Phe functionality and the aromatic moiety common to many drugs. This study demonstrates the advantage of fine-tuning sol-gel sorbents for application-specific CME-MS. We apply our method to the analysis of various drugs in synthetic and human urine samples and show low carryover effect (~ 5%) and low matrix effect in the presence of the urine matrix. Thus, the sol-gel CME-MS technique described herein stands to be an attractive alternative to other SPME-MS techniques.


Assuntos
Drogas Ilícitas/isolamento & purificação , Drogas Ilícitas/urina , Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos , Detecção do Abuso de Substâncias/métodos , Adsorção , Desenho de Equipamento , Humanos , Ligantes , Limite de Detecção , Transição de Fase , Reprodutibilidade dos Testes , Dióxido de Silício/química , Microextração em Fase Sólida/instrumentação
2.
J Chromatogr A ; 1522: 38-47, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-28969904

RESUMO

A sol-gel organic-inorganic hybrid sorbent, consisting of chemically integrated tantalum (V) ethoxide (TaEO) and polypropylene glycol methacrylate (PPGM), was developed for capillary microextraction (CME). The sol-gel sorbent was synthesized within a fused silica capillary through hydrolytic polycondensation of TaEO and chemical incorporation of PPGM into the evolving sol-gel tantala network. A part of the organic-inorganic hybrid sol-gel network evolving in the vicinity of the capillary walls had favorable conditions to get chemically bonded to the silanol groups on the capillary surface forming a surface-bonded coating. The newly developed sol-gel sorbent was employed to isolate and enrich a variety of analytes from aqueous samples for on-line analysis by high-performance liquid chromatography (HPLC) equipped with a UV detector. CME was performed on aqueous samples containing trace concentrations of analytes representing polycyclic aromatic hydrocarbons, ketones, alcohols, amines, nucleosides, and nucleotides. This sol-gel hybrid coating provided efficient extraction with CME-HPLC detection limits ranging from 4.41pM to 28.19 pM. Due to direct chemical bonding between the sol-gel sorbent coating and the fused silica capillary inner surface, this sol-gel sorbent exhibited enhanced solvent stability. The sol-gel tantala-based sorbent also exhibited excellent pH stability over a wide pH range (pH 0-pH 14). Furthermore, it displayed great performance reproducibility in CME-HPLC providing run-to-run HPLC peak area relative standard deviation (RSD) values between 0.23% and 3.83%. The capillary-to-capillary RSD (n=3), characterizing capillary preparation method reproducibility, ranged from 0.24% to 4.11%. The results show great performance consistency and application potential for the sol-gel tantala-PPGM sorbent in various fields including biomedical, pharmaceutical, and environmental areas.


Assuntos
Técnicas de Química Analítica/métodos , Cromatografia Líquida de Alta Pressão , Géis/química , Microextração em Fase Sólida , Limite de Detecção , Polímeros , Propilenoglicóis , Reprodutibilidade dos Testes , Dióxido de Silício/química , Solventes/química
3.
Anal Chim Acta ; 964: 96-111, 2017 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-28351644

RESUMO

Principles of sol-gel chemistry were utilized to create silica- and germania-based dual-ligand surface-bonded sol-gel coatings providing enhanced performance in capillary microextraction (CME) through a combination of ligand superhydrophobicity and π-π interaction. These organic-inorganic hybrid coatings were prepared using sol-gel precursors with bonded perfluorododecyl (PF-C12) and phenethyl (PhE) ligands. Here, the ability of the PF-C12 ligand to provide enhanced hydrophobic interaction was advantageously combined with π-π interaction capability of the PhE moiety to attain the desired sorbent performance in CME. The effect of the inorganic sorbent component on microextraction performance of was explored by comparing microextraction characteristics of silica- and germania-based sol-gel sorbents. The germania-based dual-ligand sol-gel sorbent demonstrated superior CME performance compared to its silica-based counterpart. Thermogravimetric analysis (TGA) of the created silica- and germania-based dual-ligand sol-gel sorbents suggested higher carbon loading on the germania-based sorbent. This might be indicative of more effective condensation of the organic ligand-bearing sol-gel-active chemical species to the germania-based sol-gel network (than to its silica-based counterpart) evolving in the sol solution. The type and concentration of the organic ligands were varied in the sol-gel sorbents to fine-tune extraction selectivity toward different classes of analytes. Specific extraction (SE) values were used for an objective comparison of the prepared sol-gel CME sorbents. The sorbents with higher content of PF-C12 showed remarkable affinity for aliphatic hydrocarbons. Compared to their single-ligand sol-gel counterparts, the dual-ligand sol-gel coatings demonstrated significantly superior CME performance in the extraction of alkylbenzenes, providing up to ∼65.0% higher SE values. The prepared sol-gel CME coatings provided low ng L-1 limit of detections (LOD) (4.2-26.3 ng L-1) for environmentally important analytes including polycyclic aromatic hydrocarbons, ketones and aliphatic hydrocarbons. In CME-GC experiments (n = 5), the capillary-to-capillary RSD value was ∼2.1%; such a low RSD value is indicative of excellent reproducibility of the sol-gel method used for the preparation of these CME coatings. The dual-ligand sol-gel coating provided stable performance in capillary microextraction of analytes from saline samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...