Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Expo Sci Environ Epidemiol ; 32(6): 855-863, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36329211

RESUMO

BACKGROUND: Toxicokinetic (TK) data needed for chemical risk assessment are not available for most chemicals. To support a greater number of chemicals, the U.S. Environmental Protection Agency (EPA) created the open-source R package "httk" (High Throughput ToxicoKinetics). The "httk" package provides functions and data tables for simulation and statistical analysis of chemical TK, including a population variability simulator that uses biometrics data from the National Health and Nutrition Examination Survey (NHANES). OBJECTIVE: Here we modernize the "HTTK-Pop" population variability simulator based on the currently available data and literature. We provide explanations of the algorithms used by "httk" for variability simulation and uncertainty propagation. METHODS: We updated and revised the population variability simulator in the "httk" package with the most recent NHANES biometrics (up to the 2017-18 NHANES cohort). Model equations describing glomerular filtration rate (GFR) were revised to more accurately represent physiology and population variability. The model output from the updated "httk" package was compared with the current version. RESULTS: The revised population variability simulator in the "httk" package now provides refined, more relevant, and better justified estimations. SIGNIFICANCE: Fulfilling the U.S. EPA's mission to provide open-source data and models for evaluations and applications by the broader scientific community, and continuously improving the accuracy of the "httk" package based on the currently available data and literature.


Assuntos
Inquéritos Nutricionais , Estados Unidos , Humanos , United States Environmental Protection Agency
2.
Reprod Toxicol ; 113: 172-188, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36122840

RESUMO

Chemical risk assessment considers potentially susceptible populations including pregnant women and developing fetuses. Humans encounter thousands of chemicals in their environments, few of which have been fully characterized. Toxicokinetic (TK) information is needed to relate chemical exposure to potentially bioactive tissue concentrations. Observational data describing human gestational exposures are unavailable for most chemicals, but physiologically based TK (PBTK) models estimate such exposures. Development of chemical-specific PBTK models requires considerable time and resources. As an alternative, generic PBTK approaches describe a standardized physiology and characterize chemicals with a set of standard physical and TK descriptors - primarily plasma protein binding and hepatic clearance. Here we report and evaluate a generic PBTK model of a human mother and developing fetus. We used a published set of formulas describing the major anatomical and physiological changes that occur during pregnancy to augment the High-Throughput Toxicokinetics (httk) software package. We simulated the ratio of concentrations in maternal and fetal plasma and compared to literature in vivo measurements. We evaluated the model with literature in vivo time-course measurements of maternal plasma concentrations in pregnant and non-pregnant women. Finally, we prioritized chemicals measured in maternal serum based on predicted fetal brain concentrations. This new model can be used for TK simulations of 859 chemicals with existing human-specific in vitro TK data as well as any new chemicals for which such data become available. This gestational model may allow for in vitro to in vivo extrapolation of point of departure doses relevant to reproductive and developmental toxicity.


Assuntos
Modelos Biológicos , Feminino , Humanos , Medição de Risco , Toxicocinética
3.
J Expo Sci Environ Epidemiol ; 30(5): 898, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647364

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
J Expo Sci Environ Epidemiol ; 30(5): 866-877, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32546826

RESUMO

Currently it is difficult to prospectively estimate human toxicokinetics (particularly for novel chemicals) in a high-throughput manner. The R software package httk has been developed, in part, to address this deficiency, and the aim of this investigation was to develop a generalized inhalation model for httk. The structure of the inhalation model was developed from two previously published physiologically based models from Jongeneelen and Berge (Ann Occup Hyg 55:841-864, 2011) and Clewell et al. (Toxicol Sci 63:160-172, 2001), while calculated physicochemical data was obtained from EPA's CompTox Chemicals Dashboard. In total, 142 exposure scenarios across 41 volatile organic chemicals were modeled and compared to published data. The slope of the regression line of best fit between log-transformed simulated and observed blood and exhaled breath concentrations was 0.46 with an r2 = 0.45 and a root mean square error (RMSE) of direct comparison between the log-transformed simulated and observed values of 1.11. Approximately 5.1% (n = 108) of the data points analyzed were >2 orders of magnitude different than expected. The volatile organic chemicals examined in this investigation represent small, generally lipophilic molecules. Ultimately this paper details a generalized inhalation component that integrates with the httk physiologically based toxicokinetic model to provide high-throughput estimates of inhalation chemical exposures.


Assuntos
Compostos Orgânicos Voláteis , Humanos , Exposição por Inalação , Modelos Biológicos , Medição de Risco , Toxicocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...