Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biogeosciences ; 20(13): 2805-2812, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38818347

RESUMO

Forty years ago, lichens were identified as extraordinary biological ice nucleators (INs) that enable ice formation at temperatures close to 0°C. By employing INs, lichens thrive in freezing environments that surpass the physiological limits of other vegetation, thus making them the majority of vegetative biomass in northern ecosystems. Aerosolized lichen INs might further impact cloud glaciation and have the potential to alter atmospheric processes in a warming Arctic. Despite the ecological importance and formidable ice nucleation activities, the abundance, diversity, sources, and role of ice nucleation in lichens remain poorly understood. Here, we investigate the ice nucleation capabilities of lichens collected from various ecosystems across Alaska. We find ice-nucleating activity in lichen to be widespread, particularly in the coastal rainforest of Southeast Alaska. Across 29 investigated lichen, all species show ice nucleation temperatures above -15 °C and ~30% initiate freezing at temperatures above -6 °C. Concentration series of lichen ice nucleation assays in combination with statistical analysis reveal that the lichens contain two subpopulations of INs, similar to previous observations in bacteria. However, unlike the bacterial INs, the lichen INs appear as independent subpopulations resistant to freeze-thaw cycles and against temperature treatment. The ubiquity and high stability of the lichen INs suggest that they can impact local atmospheric processes and that ice nucleation activity is an essential trait for their survival in cold environments.

2.
Mol Cell Proteomics ; 20: 100041, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33639418

RESUMO

Cells continually degrade and replace damaged proteins. However, the high energetic demand of protein turnover generates reactive oxygen species that compromise the long-term health of the proteome. Thus, the relationship between aging, protein turnover, and energetic demand remains unclear. Here, we used a proteomic approach to measure rates of protein turnover within primary fibroblasts isolated from a number of species with diverse life spans including the longest-lived mammal, the bowhead whale. We show that organismal life span is negatively correlated with turnover rates of highly abundant proteins. In comparison with mice, cells from long-lived naked mole rats have slower rates of protein turnover, lower levels of ATP production, and reduced reactive oxygen species levels. Despite having slower rates of protein turnover, naked mole rat cells tolerate protein misfolding stress more effectively than mouse cells. We suggest that in lieu of a rapid constitutive turnover, long-lived species may have evolved more energetically efficient mechanisms for selective detection and clearance of damaged proteins.


Assuntos
Proteoma , Aminoácidos , Animais , Humanos , Cinética , Luz , Longevidade , Preparações Farmacêuticas , Proteômica , Radioisótopos , Especificidade da Espécie
3.
F1000Res ; 9: 648, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765842

RESUMO

Several cold-hardy grasses have been shown to have ice-binding proteins (IBPs) that protect against freeze-thaw injury. Here, we looked for IBP activity in an Alaskan coastal grass, Leymus mollis (Pooidae), that had not previously been examined. Rhizome tissue had strong ice-structuring and ice recrystallization inhibiting (IRI) activities, indicating the probable presence of IBPs. The gene sequence of an IBP was obtained. The sequence encoded a 118-amino acid IRI domain composed of eight repeats and that was 80% identical to the IRI domain of the IBP of perennial ryegrass Lolium perenne. The predicted 3D structure of the IRI domain had eight beta-roll coils like those in L. perenne IBP.


Assuntos
Proteínas de Transporte/genética , Gelo , Proteínas de Plantas/genética , Poaceae/genética , Sequência de Aminoácidos , Regiões Árticas , Proteínas de Transporte/metabolismo , Congelamento , Proteínas de Plantas/metabolismo , Poaceae/metabolismo , Estrutura Secundária de Proteína
4.
J Exp Biol ; 221(Pt 23)2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30337355

RESUMO

Bowhead and right whale (balaenid) baleen filtering plates, longer in vertical dimension (≥3-4 m) than the closed mouth, presumably bend during gape closure. This has not been observed in live whales, even with scrutiny of video-recorded feeding sequences. To determine what happens to the baleen during gape closure, we conducted an integrative, multifactorial study including materials testing, functional (flow tank and kinematic) testing and histological examination. We measured baleen bending properties along the dorsoventral length of plates and anteroposterior location within a rack of plates via mechanical (axial bending, composite flexure, compression and tension) tests of hydrated and air-dried tissue samples from balaenid and other whale baleen. Balaenid baleen is remarkably strong yet pliable, with ductile fringes, and low stiffness and high elasticity when wet; it likely bends in the closed mouth when not used for filtration. Calculation of flexural modulus from stress/strain experiments shows that the balaenid baleen is slightly more flexible where it emerges from the gums and at its ventral terminus, but kinematic analysis indicates plates bend evenly along their whole length. Fin and humpback whale baleen has similar material properties but less flexibility, with no dorsoventral variation. The internal horn tubes have greater external and hollow luminal diameter but lower density in the lateral relative to medial baleen of bowhead and fin whales, suggesting a greater capacity for lateral bending. Baleen bending has major consequences not only for feeding morphology and energetics but also for conservation given that entanglement in fishing gear is a leading cause of whale mortality.


Assuntos
Boca/anatomia & histologia , Baleias/anatomia & histologia , Animais , Fenômenos Biomecânicos , Queratinas , Boca/fisiologia , Baleias/fisiologia
5.
R Soc Open Sci ; 3(10): 160591, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27853579

RESUMO

Baleen, an anisotropic oral filtering tissue found only in the mouth of mysticete whales and made solely of alpha-keratin, exhibits markedly differing physical and mechanical properties between dried or (as in life) hydrated states. On average baleen is 32.35% water by weight in North Atlantic right whales (Eubalaena glacialis) and 34.37% in bowhead whales (Balaena mysticetus). Baleen's wettability measured by water droplet contact angles shows that dried baleen is hydrophobic whereas hydrated baleen is highly hydrophilic. Three-point flexural bending tests of mechanical strength reveal that baleen is strong yet ductile. Dried baleen is brittle and shatters at about 20-30 N mm-2 but hydrated baleen is less stiff; it bends with little force and absorbed water is squeezed out when force is applied. Maximum recorded stress was 4× higher in dried (mean 14.29 N mm-2) versus hydrated (mean 3.69 N mm-2) baleen, and the flexural stiffness was >10× higher in dried (mean 633N mm-2) versus hydrated (mean 58 N mm-2) baleen. In addition to documenting hydration's powerful effects on baleen, this study indicates that baleen is far more pliant and malleable than commonly supposed, with implications for studies of baleen's structure and function as well as its susceptibility to oil or other hydrophobic pollutants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...