Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Histol Histopathol ; 35(12): 1415-1426, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32959885

RESUMO

INTRODUCTION: Mesenchymal stromal cells (MSCs) can be derived from a wide range of fetal and adult sources including pluripotent stem cells (PSCs). The properties of PSC-derived MSCs need to be fully characterized, in order to evaluate the feasibility of their use in clinical applications. PSC-MSC proliferation and differentiation potential in comparison with bone marrow (BM)-MSCs is still under investigation. The objective of this study was to determine the proliferative and chondrogenic capabilities of both human induced pluripotent stem cell (hiPSC-) and embryonic stem cell (hESC-) derived MSCs, by comparing them with BM-MSCs. METHODS: MSCs were derived from two hiPSC lines (hiPSC-MSCs), the well characterized Hues9 hESC line (hESC-MSCs) and BM from two healthy donors (BM-MSCs). Proliferation potential was investigated using appropriate culture conditions, with serial passaging, until cells entered into senescence. Differentiation potential to cartilage was examined after in vitro chondrogenic culture conditions. RESULTS: BM-MSCs revealed a fold expansion of 1.18x105 and 2.3x105 while the two hiPSC-MSC lines and hESC-MSC showed 5.88x10¹°, 3.49x108 and 2.88x108, respectively. Under chondrogenic conditions, all MSC lines showed a degree of chondrogenesis. However, when we examined the formed chondrocyte micromasses by histological analysis of the cartilage morphology and immunohistochemistry for the chondrocyte specific markers Sox9 and Collagen II, we observed that PSC-derived MSC lines had formed pink rather than hyaline cartilage, in contrast to BM-MSCs. CONCLUSION: In conclusion, MSCs derived from both hESCs and hiPSCs had superior proliferative capacity compared to BM-MSCs, but they were inefficient in their ability to form hyaline cartilage.


Assuntos
Células da Medula Óssea/fisiologia , Diferenciação Celular , Proliferação de Células , Condrogênese , Células-Tronco Embrionárias Humanas/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Mesenquimais/fisiologia , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/metabolismo , Linhagem Celular , Colágeno Tipo II/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Fenótipo , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais
2.
Inflammation ; 42(5): 1730-1740, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31227956

RESUMO

Acute inflammatory bowel disease (AIBD) is a wide clinical entity including severe gastrointestinal pathologies with common histopathological basis. Epidemiologically increasing diseases, such as necrotizing enterocolitis (NEC), gastrointestinal graft versus host disease (GVHD), and the primary acute phase of chronic inflammatory bowel disease (CIBD), exhibit a high necessity for new therapeutic strategies. Mesenchymal stem cell (MSC) cellular therapy represents a promising option for the treatment of these diseases. In our study, we comparatively assess the efficacy of human MSCs derived from bone marrow (BM), umbilical cord blood (UCB), human embryonic stem cells (ESCs), or human-induced pluripotent stem cells (iPSCs) in a mouse model of chemically induced acute enterocolitis. The laboratory animals were provided ad libitum potable dextrane sulfate sodium solution (DSS) in order to reproduce an AIBD model and then individually exposed intraperitoneally to MSCs derived from BM (BM-MSCs), UCB (UCB-MSCs), ESCs (ESC-MSCs), or iPSCs (iPSC-MSCs). The parameters used to evaluate the cellular treatment efficacy were the animal survival prolongation and the histopathological-macroscopic picture of bowel sections. Although all categories of mesenchymal stem cells led to statistically significant survival prolongation compared to the control group, significant clinical and histopathological improvement was observed only in mice receiving BM-MSCs and UCB-MSCs. Our results demonstrated that the in vivo anti-inflammatory effect of ESC-MSCs and iPSC-MSCs was inferior to that of UCB-MSCs and BM-MSCs. Further investigation will clarify the potential of ESCs and iPSC-derived MSCs in AIBD treatment.


Assuntos
Doenças Inflamatórias Intestinais/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Células da Medula Óssea/citologia , Modelos Animais de Doenças , Sangue Fetal/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/mortalidade , Transplante de Células-Tronco Mesenquimais/normas , Camundongos , Análise de Sobrevida
3.
Blood Cells Mol Dis ; 76: 32-39, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30709626

RESUMO

The potential use of patient-specific induced pluripotent stem cells (hiPSCs) in the study and treatment of hematological diseases requires the setup of efficient and safe protocols for hiPSC generation. We aimed to adopt a reprogramming method for large-scale production of integration-free patient-specific hiPSC-lines in our stem cell processing laboratory, which supports a pediatric hematopoietic stem cell transplant unit located at a tertiary care children's hospital. We describe our 5-year experience in generation of hiPSC-lines from human bone marrow-derived mesenchymal stromal cells (BM-MSCs) using synthetic mRNAs encoding reprogramming factors. We generated hiPSC-lines from pediatric patients with ß-Thalassemia, Sickle Cell Anemia, Blackfan-Diamond Anemia, Severe Aplastic Anemia, DOCK8 Immunodeficiency and 1 healthy control. After optimization of the reprogramming procedure, average reprogramming efficiency of BM-MSCs was 0.29% (range 0.25-0.4). The complete reprogramming process lasted 14-16 days. Three to five hiPSC-colonies per sample were selected, expanded to 5 culture passages and then frozen. The whole procedure took an average time of 1.8 months (range 1.6-2.2). The hiPSC-lines expressed embryonic stem cell markers and exhibited pluripotency. This mRNA reprogramming method can be applicable in a hematopoietic stem cell culture lab setting and would be useful for the clinical translation of patient-specific hiPSCs.


Assuntos
Reprogramação Celular/efeitos dos fármacos , Doenças Hematológicas/terapia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia , RNA Mensageiro/farmacologia , Criança , Transplante de Células-Tronco Hematopoéticas , Humanos , Métodos , Medicina de Precisão/métodos , RNA Mensageiro/síntese química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...