Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(10): e2310852121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38416678

RESUMO

Enterococci are gut microbes of most land animals. Likely appearing first in the guts of arthropods as they moved onto land, they diversified over hundreds of millions of years adapting to evolving hosts and host diets. Over 60 enterococcal species are now known. Two species, Enterococcus faecalis and Enterococcus faecium, are common constituents of the human microbiome. They are also now leading causes of multidrug-resistant hospital-associated infection. The basis for host association of enterococcal species is unknown. To begin identifying traits that drive host association, we collected 886 enterococcal strains from widely diverse hosts, ecologies, and geographies. This identified 18 previously undescribed species expanding genus diversity by >25%. These species harbor diverse genes including toxins and systems for detoxification and resource acquisition. Enterococcus faecalis and E. faecium were isolated from diverse hosts highlighting their generalist properties. Most other species showed a more restricted distribution indicative of specialized host association. The expanded species diversity permitted the Enterococcus genus phylogeny to be viewed with unprecedented resolution, allowing features to be identified that distinguish its four deeply rooted clades, and the entry of genes associated with range expansion such as B-vitamin biosynthesis and flagellar motility to be mapped to the phylogeny. This work provides an unprecedentedly broad and deep view of the genus Enterococcus, including insights into its evolution, potential new threats to human health, and where substantial additional enterococcal diversity is likely to be found.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Animais , Humanos , Enterococcus/genética , Antibacterianos/farmacologia , Enterococcus faecium/genética , Enterococcus faecalis/genética , Filogenia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana
2.
bioRxiv ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37293047

RESUMO

Enterococci are commensal gut microbes of most land animals. They diversified over hundreds of millions of years adapting to evolving hosts and host diets. Of over 60 known enterococcal species, Enterococcus faecalis and E. faecium uniquely emerged in the antibiotic era among leading causes of multidrug resistant hospital-associated infection. The basis for the association of particular enterococcal species with a host is largely unknown. To begin deciphering enterococcal species traits that drive host association, and to assess the pool of Enterococcus-adapted genes from which known facile gene exchangers such as E. faecalis and E. faecium may draw, we collected 886 enterococcal strains from nearly 1,000 specimens representing widely diverse hosts, ecologies and geographies. This provided data on the global occurrence and host associations of known species, identifying 18 new species in the process expanding genus diversity by >25%. The novel species harbor diverse genes associated with toxins, detoxification, and resource acquisition. E. faecalis and E. faecium were isolated from a wide diversity of hosts highlighting their generalist properties, whereas most other species exhibited more restricted distributions indicative of specialized host associations. The expanded species diversity permitted the Enterococcus genus phylogeny to be viewed with unprecedented resolution, allowing features to be identified that distinguish its four deeply rooted clades as well as genes associated with range expansion, such as B-vitamin biosynthesis and flagellar motility. Collectively, this work provides an unprecedentedly broad and deep view of the genus Enterococcus, potential threats to human health, and new insights into its evolution.

3.
Foods ; 10(4)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920106

RESUMO

As a genus that has evolved for resistance against adverse environmental factors and that readily exchanges genetic elements, enterococci are well adapted to the cheese environment and may reach high numbers in artisanal cheeses. Their metabolites impact cheese flavor, texture, and rheological properties, thus contributing to the development of its typical sensorial properties. Due to their antimicrobial activity, enterococci modulate the cheese microbiota, stimulate autolysis of other lactic acid bacteria (LAB), control pathogens and deterioration microorganisms, and may offer beneficial effects to the health of their hosts. They could in principle be employed as adjunct/protective/probiotic cultures; however, due to their propensity to acquire genetic determinants of virulence and antibiotic resistance, together with the opportunistic character of some of its members, this genus does not possess Qualified Presumption of Safety (QPS) status. It is, however, noteworthy that some putative virulence factors described in foodborne enterococci may simply reflect adaptation to the food environment and to the human host as commensal. Further research is needed to help distinguish friend from foe among enterococci, eventually enabling exploitation of the beneficial aspects of specific cheese-associated strains. This review aims at discussing both beneficial and deleterious roles played by enterococci in artisanal cheeses, while highlighting the need for further research on such a remarkably hardy genus.

4.
Molecules ; 22(11)2017 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-29113051

RESUMO

Antimicrobial peptides can be used systemically, however, their susceptibility to proteases is a major obstacle in peptide-based therapeutic development. In the present study, the serum stability of p-BthTX-I (KKYRYHLKPFCKK) and (p-BthTX-I)2, a p-BthTX-I disulfide-linked dimer, were analyzed by mass spectrometry and analytical high-performance liquid chromatography (HPLC). Antimicrobial activities were assessed by determining their minimum inhibitory concentrations (MIC) using cation-adjusted Mueller-Hinton broth. Furthermore, biofilm eradication and time-kill kinetics were performed. Our results showed that p-BthTX-I and (p-BthTX-I)2 were completely degraded after 25 min. Mass spectrometry showed that the primary degradation product was a peptide that had lost four lysine residues on its C-terminus region (des-Lys12/Lys13-(p-BthTX-I)2), which was stable after 24 h of incubation. The antibacterial activities of the peptides p-BthTX-I, (p-BthTX-I)2, and des-Lys12/Lys13-(p-BthTX-I)2 were evaluated against a variety of bacteria, including multidrug-resistant strains. Des-Lys12/Lys13-(p-BthTX-I)2 and (p-BthTX-I)2 degraded Staphylococcus epidermidis biofilms. Additionally, both the peptides exhibited bactericidal activities against planktonic S. epidermidis in time-kill assays. The emergence of bacterial resistance to a variety of antibiotics used in clinics is the ultimate challenge for microbial infection control. Therefore, our results demonstrated that both peptides analyzed and the product of proteolysis obtained from (p-BthTX-I)2 are promising prototypes as novel drugs to treat multidrug-resistant bacterial infections.


Assuntos
Antibacterianos , Peptídeos Catiônicos Antimicrobianos , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Staphylococcus epidermidis/fisiologia , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacocinética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...