Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(11): 6558-6570, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38520410

RESUMO

N-terminal arginine (NTR) methylation is a conserved feature of PIWI proteins, which are central components of the PIWI-interacting RNA (piRNA) pathway. The significance and precise function of PIWI NTR methylation in mammals remains unknown. In mice, PIWI NTRs bind Tudor domain containing proteins (TDRDs) that have essential roles in piRNA biogenesis and the formation of the chromatoid body. Using mouse MIWI (PIWIL1) as paradigm, we demonstrate that the NTRs are essential for spermatogenesis through the regulation of transposons and gene expression. The loss of TDRD5 and TDRKH interaction with MIWI results in attenuation of piRNA amplification. We find that piRNA amplification is necessary for transposon control and for sustaining piRNA levels including select, nonconserved, pachytene piRNAs that target specific mRNAs required for spermatogenesis. Our findings support the notion that the vast majority of pachytene piRNAs are dispensable, acting as self-serving genetic elements that rely for propagation on MIWI piRNA amplification. MIWI-NTRs also mediate interactions with TDRD6 that are necessary for chromatoid body compaction. Furthermore, MIWI-NTRs promote stabilization of spermiogenic transcripts that drive nuclear compaction, which is essential for sperm formation. In summary, the NTRs underpin the diversification of MIWI protein function.


Assuntos
Arginina , Proteínas Argonautas , Estágio Paquíteno , RNA Interferente Pequeno , Espermatogênese , Animais , Masculino , Camundongos , Arginina/metabolismo , Arginina/genética , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Elementos de DNA Transponíveis , RNA de Interação com Piwi , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA , Domínio Tudor
2.
bioRxiv ; 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38260298

RESUMO

N-terminal arginine (NTR) methylation is a conserved feature of PIWI proteins, which are central components of the PIWI-interacting RNA (piRNA) pathway. The significance and precise function of PIWI NTR methylation in mammals remains unknown. In mice, PIWI NTRs bind Tudor domain containing proteins (TDRDs) that have essential roles in piRNA biogenesis and the formation of the chromatoid body. Using mouse MIWI (PIWIL1) as paradigm, we demonstrate that the NTRs are essential for spermatogenesis through the regulation of transposons and gene expression. Surprisingly, the loss of TDRD5 and TDRKH interaction with MIWI results in defective piRNA amplification, rather than an expected failure of piRNA biogenesis. We find that piRNA amplification is necessary for both transposon control and for sustaining levels of select, nonconserved, pachytene piRNAs that target specific mRNAs required for spermatogenesis. Our findings support the notion that the vast majority of pachytene piRNAs are dispensable, acting as autonomous genetic elements that rely for propagation on MIWI piRNA amplification. MIWI-NTRs also mediate interactions with TDRD6 that are necessary for chromatoid body compaction. Furthermore, MIWI-NTRs promote stabilization of spermiogenic transcripts that drive nuclear compaction, which is essential for sperm formation. In summary, the NTRs underpin the diversification of MIWI protein function.

3.
Cell Rep ; 41(10): 111768, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36476860

RESUMO

The thalamus is the principal information hub of the vertebrate brain, with essential roles in sensory and motor information processing, attention, and memory. The complex array of thalamic nuclei develops from a restricted pool of neural progenitors. We apply longitudinal single-cell RNA sequencing and regional abrogation of Sonic hedgehog (Shh) to map the developmental trajectories of thalamic progenitors, intermediate progenitors, and post-mitotic neurons as they coalesce into distinct thalamic nuclei. These data reveal that the complex architecture of the thalamus is established early during embryonic brain development through the coordinated action of four cell differentiation lineages derived from Shh-dependent and -independent progenitors. We systematically characterize the gene expression programs that define these thalamic lineages across time and demonstrate how their disruption upon Shh depletion causes pronounced locomotor impairment resembling infantile Parkinson's disease. These results reveal key principles of thalamic development and provide mechanistic insights into neurodevelopmental disorders resulting from thalamic dysfunction.


Assuntos
Tálamo , Tálamo/citologia
4.
Life Sci Alliance ; 4(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33376130

RESUMO

Aub guided by piRNAs ensures genome integrity by cleaving retrotransposons, and genome propagation by trapping mRNAs to form the germplasm that instructs germ cell formation. Arginines at the N-terminus of Aub (Aub-NTRs) interact with Tudor and other Tudor domain-containing proteins (TDRDs). Aub-TDRD interactions suppress active retrotransposons via piRNA amplification and form germplasm via generation of Aub-Tudor ribonucleoproteins. Here, we show that Aub-NTRs are dispensable for primary piRNA biogenesis but essential for piRNA amplification and that their symmetric dimethylation is required for germplasm formation and germ cell specification but largely redundant for piRNA amplification.


Assuntos
Proteínas Argonautas/metabolismo , Citoplasma/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Amplificação de Genes , Células Germinativas/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , RNA Interferente Pequeno/genética , Domínio Tudor/genética , Animais , Animais Geneticamente Modificados , Arginina/metabolismo , Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/genética , Feminino , Masculino , Ovário/metabolismo , Fatores de Iniciação de Peptídeos/genética , RNA Mensageiro/metabolismo
5.
Sci Rep ; 7: 43708, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28272472

RESUMO

Recessive mutations in WD repeat domain 62 (WDR62) cause microcephaly and a wide spectrum of severe brain malformations. Disruption of the mouse ortholog results in microcephaly underlain by reduced proliferation of neocortical progenitors during late neurogenesis, abnormalities in asymmetric centrosome inheritance leading to neuronal migration delays, and altered neuronal differentiation. Spindle pole localization of WDR62 and mitotic progression are defective in patient-derived fibroblasts, which, similar to mouse neocortical progenitors, transiently arrest at prometaphase. Expression of WDR62 is closely correlated with components of the chromosome passenger complex (CPC), a key regulator of mitosis. Wild type WDR62, but not disease-associated mutant forms, interacts with the CPC core enzyme Aurora kinase B and staining of CPC components at centromeres is altered in patient-derived fibroblasts. Our findings demonstrate critical and diverse functions of WDR62 in neocortical development and provide insight into the mechanisms by which its disruption leads to a plethora of structural abnormalities.


Assuntos
Aurora Quinase B/genética , Centrossomo/metabolismo , Epistasia Genética , Padrões de Herança , Microcefalia/genética , Proteínas do Tecido Nervoso/genética , Animais , Encéfalo/anormalidades , Encéfalo/metabolismo , Encéfalo/patologia , Ciclo Celular/genética , Proteínas de Ciclo Celular , Diferenciação Celular/genética , Proliferação de Células , Consanguinidade , Modelos Animais de Doenças , Imunofluorescência , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Knockout , Microcefalia/diagnóstico por imagem , Microcefalia/patologia , Mutação , Células-Tronco Neurais/metabolismo , Linhagem , Sequenciamento Completo do Genoma
6.
Genesis ; 48(6): 354-61, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20533403

RESUMO

Zebrafish embryos demonstrate robust swimming behavior, which consists of smooth, alternating body bends. In contrast, several motility mutants have been identified that perform sustained, bilateral trunk muscle contractions which result in abnormal body shortening. Unlike most of these mutants, accordion (acc)(dta5) demonstrates a semidominant effect: Heterozygotes exhibit a distinct but less severe phenotype than homozygotes. Using molecular-genetic mapping and candidate gene analysis, we determined that acc(dta5) mutants harbor a novel mutation in atp2a1, which encodes SERCA1, a calcium pump important for muscle relaxation. Previous studies have shown that eight other acc alleles compromise SERCA1 function, but these alleles were all reported to be recessive. Quantitative behavioral assays, complementation testing, and analysis of molecular models all indicate that the acc(dta5) mutation diminishes SERCA1 function to a greater degree than other acc alleles through either haploinsufficient or dominant-negative molecular mechanisms. Since mutation of human ATP2A1 results in Brody disease, an exercise-induced impairment of muscle relaxation, acc(dta5) mutants may provide a particularly sensitive model of this disorder.


Assuntos
Embrião não Mamífero/fisiologia , Genes Dominantes , Mutação/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Sequência de Aminoácidos , Animais , Comportamento Animal/fisiologia , Humanos , Hibridização In Situ , Dados de Sequência Molecular , Relaxamento Muscular/fisiologia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...