Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Eur J Pharmacol ; 977: 176748, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38897443

RESUMO

An increase in fibrous connective tissue and a decrease in parenchymal cells in organ tissues are the primary pathological alterations linked to organ fibrosis. If fibrosis is not treated, organ structure is destroyed, function can decline, or even fail, posing a serious risk to human life and health. Numerous organs develop fibrosis, and organ fibroproliferative illnesses account for almost 45% of patient deaths from various diseases in the industrialized world, as well as a major cause of disability and mortality in many other diseases. Recently, it has become evident that histone modification is an important way to regulate gene expression in organ fibrosis. Histone modifications alter the structure of chromatin, thereby affecting gene accessibility. Histone acetylation modifications relax chromatin, making it easier for gene transcription factors to access DNA, thereby promoting gene transcription. In addition, histone modifications recruit other proteins to interact with chromatin to form complexes that further regulate gene expression. Histone methylation modifications recruit methylation-reading proteins that recognize methylation marks and alter gene expression status. It not only affects the normal physiological function of cells, but also plays an important role in organ fibrosis. This article reviews the important role played by histone modifications in organ fibrosis and potential therapeutic approaches.


Assuntos
Fibrose , Histonas , Humanos , Histonas/metabolismo , Animais , Processamento de Proteína Pós-Traducional , Acetilação , Metilação
2.
Eur J Nutr ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748287

RESUMO

PURPOSE: Dietary fiber (DF) has a good application prospect in effectively restoring the integrity of the intestinal mucosal barrier. Ginseng-DF has good physicochemical properties and physiological activity and shows positive effects in enhancing immunity. The aim of this study was to investigate the protective effect of Ginseng-DF on intestinal mucosal barrier injury induced by cyclophosphamide (CTX) in immunosuppressed mice and its possible mechanism. METHODS: The effects of Gginseng-DF on immune function in mice were studied by delayed-type hypersensitivy, lymphocyte proliferation assay and NK cytotoxicity assay, the T lymphocyte differentiation and intestinal barrier integrity were analyzed by flow cytometry and western blot. RESULTS: Ginseng-DF (2.5% and 5%) could attenuate the inhibition of DTH response by CTX, promote the transformation and proliferation of lymphocytes, and stimulate NK effector cell activity. At the same time, Ginseng-DF could restore the proportion of CD4+/CD8+ T lymphocytes induced by CTX to different extents, improved spleen tissue damage, promoted the secretion of immunoglobulin IgG, and enhanced body immunity. More importantly, Ginseng-DF could up-regulate the contents of TNF-α, IFN-γ, IL-6 and IL-1ß in serum and intestine of immunosuppressed mice to maintain the balance between Th1/Th2 cytokines, and improve the permeability of intestinal mucosal barrier. Meanwhile, Ginseng-DF could reduce intestinal epithelial cell apoptosis and improve intestinal adaptive immunity in CTX-induced immunosuppressed mice by regulating MAPK/NF-κB signaling pathway. CONCLUSION: Ginseng-DF can be used as a safe dietary supplement to enhance body immunity and reduce intestinal mucosal injury caused by CTX.

3.
Sci Total Environ ; 914: 170040, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215853

RESUMO

Di(2-ethylhexyl) phthalate (DEHP) is regarded as a priority environmental pollutant. This study explored the adsorption and accumulation of DEHP within the ginseng-soil system and the mechanism of DEHP toxicity to ginseng (Panax ginseng C.A. Meyer). Under exposure to 22.10 mg/kg DEHP in soil, DEHP mainly accumulated in ginseng leaves (20.28 mg/kg), stems (4.84 mg/kg) and roots (2.00 mg/kg) after 42 days. The oxidative damage, metabolism, protein express of ginseng were comprehensively measured and analyzed. The results revealed that MDA presented an activation trend in ginseng stems and leaves after 42 days of DEHP exposure, while the opposite trend was observed for POD. Levels of ginsenoside metabolites Rg2, Rg3, Rg5, Rd, Rf and CK decreased in the ginseng rhizosphere exudates under DEHP stress. Further investigations revealed that DEHP disrupts ginsenoside synthesis by inducing glycosyltransferase (GS) and squalene synthase (SS) protein interactions. Molecular docking indicated that DEHP could stably bind to GS and SS by intermolecular forces. These findings provide new information on the ecotoxicological effect of DEHP on ginseng root.


Assuntos
Dietilexilftalato , Ginsenosídeos , Panax , Ácidos Ftálicos , Poluentes do Solo , Dietilexilftalato/metabolismo , Solo , Poluentes do Solo/análise , Panax/metabolismo , Simulação de Acoplamento Molecular
4.
Int J Biol Macromol ; 254(Pt 1): 127593, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898244

RESUMO

Cardiac fibroblasts play a pivotal role in cardiac fibrosis by transformation of fibroblasts into myofibroblasts, which synthesis and secrete a large number of extracellular matrix proteins. Ultimately, this will lead to cardiac wall stiffness and impaired cardiac performance. The epigenetic regulation and fate reprogramming of cardiac fibroblasts has been advanced considerably in recent decades. Non coding RNAs (microRNAs, lncRNAs, circRNAs) regulate the functions and behaviors of cardiac fibroblasts, including proliferation, migration, phenotypic transformation, inflammation, pyroptosis, apoptosis, autophagy, which can provide the basis for novel targeted therapeutic treatments that abrogate activation and inflammation of cardiac fibroblasts, induce different death pathways in cardiac fibroblasts, or make it sensitive to established pathogenic cells targeted cytotoxic agents and biotherapy. This review summarizes our current knowledge in this field of ncRNAs function in epigenetic regulation and fate determination of cardiac fibroblasts as well as the details of signaling pathways contribute to cardiac fibrosis. Moreover, we will comment on the emerging landscape of lncRNAs and circRNAs function in regulating signal transduction pathways, gene translation processes and post-translational regulation of gene expression in cardiac fibroblast. In the end, the prospect of cardiac fibroblasts targeted therapy for cardiac fibrosis based on ncRNAs is discussed.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Epigênese Genética , RNA Circular/metabolismo , RNA não Traduzido/genética , Fibrose , MicroRNAs/genética , MicroRNAs/metabolismo , Fibroblastos/metabolismo , Cardiotônicos/metabolismo , Inflamação/patologia
5.
Eur J Pharmacol ; 956: 175959, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37541361

RESUMO

Pulmonary fibrosis is a chronic and progressive fibrotic disease that results in impaired gas exchange, ventilation, and eventual death. The pro-fibrotic environment is instigated by various factors, leading to the transformation of epithelial cells into myofibroblasts and/or fibroblasts that trigger fibrosis. Epithelial mesenchymal transition (EMT) is a biological process that plays a critical role in the pathogenesis of pulmonary fibrosis. Epigenetic regulation of tissue-stromal crosstalk involving DNA methylation, histone modifications, non-coding RNA, and chromatin remodeling plays a key role in the control of EMT. The review investigates the epigenetic regulation of EMT and its significance in pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Humanos , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Transição Epitelial-Mesenquimal/genética , Epigênese Genética , Pulmão/patologia , Fibrose
6.
Free Radic Biol Med ; 207: 1-10, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37419215

RESUMO

Accumulating evidence has shown that aerobic glycolysis is essential for the establishment and maintenance of the fibrotic phenotype, so treatments targeting glycolytic reprogramming may become an important strategy to reduce fibrosis. Here, we reviewed current evidence on the glycolytic reprogramming in organ fibrosis, new dynamics of the epigenetic landscape. Epigenetic regulation of the expression of specific genes involved mediates glycolytic reprogramming, thereby affecting fibrosis progression. A comprehensive understanding of the interplay between aerobic glycolysis and epigenetics holds great promise for the treatment and intervention of fibrotic diseases. This article aims to comprehensively review the effect of aerobic glycolysis on organ fibrosis, and to elucidate the relevant epigenetic mechanisms of glycolytic reprogramming in different organs.


Assuntos
Epigênese Genética , Glicólise , Humanos , Glicólise/genética , Fibrose
7.
Pharmacol Res ; 194: 106840, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37379961

RESUMO

Dysregulated mitochondrial metabolism occurs in several pathological processes characterized by cell proliferation and migration. Nonetheless, the role of mitochondrial fission is not well appreciated in cardiac fibrosis, which is accompanied by enhanced fibroblast proliferation and migration. We investigated the causes and consequences of mitochondrial fission in cardiac fibrosis using cultured cells, animal models, and clinical samples. Increased METTL3 expression caused excessive mitochondrial fission, resulting in the proliferation and migration of cardiac fibroblasts that lead to cardiac fibrosis. Knockdown of METTL3 suppressed mitochondrial fission, inhibiting fibroblast proliferation and migration for ameliorating cardiac fibrosis. Elevated METTL3 and N6-methyladenosine (m6A) levels were associated with low expression of long non-coding RNA GAS5. Mechanistically, METTL3-mediated m6A methylation of GAS5 induced its degradation, dependent of YTHDF2. GAS5 could interact with mitochondrial fission marker Drp1 directly; overexpression of GAS5 suppressed Drp1-mediated mitochondrial fission, inhibiting cardiac fibroblast proliferation and migration. Knockdown of GAS5 produced the opposite effect. Clinically, increased METTL3 and YTHDF2 levels corresponded with decreased GAS5 expression, increased m6A mRNA content and mitochondrial fission, and increased cardiac fibrosis in human heart tissue with atrial fibrillation. We describe a novel mechanism wherein METTL3 boosts mitochondrial fission, cardiac fibroblast proliferation, and fibroblast migration: METTL3 catalyzes m6A methylation of GAS5 methylation in a YTHDF2-dependent manner. Our findings provide insight into the development of preventative measures for cardiac fibrosis.


Assuntos
Metiltransferases , Dinâmica Mitocondrial , RNA Longo não Codificante , Animais , Humanos , Fibrose , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo , Camundongos
8.
Metabolism ; 145: 155626, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37302693

RESUMO

Cardiac fibrosis (CF) is considered an ultimate common pathway of a wide variety of heart diseases in response to diverse pathological and pathophysiological stimuli. Mitochondria are characterized as isolated organelles with a double-membrane structure, and they primarily contribute to and maintain highly dynamic energy and metabolic networks whose distribution and structure exert potent support for cellular properties and performance. Because the myocardium is a highly oxidative tissue with high energy demands to continuously pump blood, mitochondria are the most abundant organelles within mature cardiomyocytes, accounting for up to one-third of the total cell volume, and play an essential role in maintaining optimal performance of the heart. Mitochondrial quality control (MQC), including mitochondrial fusion, fission, mitophagy, mitochondrial biogenesis, and mitochondrial metabolism and biosynthesis, is crucial machinery that modulates cardiac cells and heart function by maintaining and regulating the morphological structure, function and lifespan of mitochondria. Certain investigations have focused on mitochondrial dynamics, including manipulating and maintaining the dynamic balance of energy demand and nutrient supply, and the resultant findings suggest that changes in mitochondrial morphology and function may contribute to bioenergetic adaptation during cardiac fibrosis and pathological remodeling. In this review, we discuss the function of epigenetic regulation and molecular mechanisms of MQC in the pathogenesis of CF and provide evidence for targeting MQC for CF. Finally, we discuss how these findings can be applied to improve the treatment and prevention of CF.


Assuntos
Epigênese Genética , Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Mitofagia/genética , Fibrose , Miócitos Cardíacos/metabolismo
9.
Front Immunol ; 14: 1085456, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153583

RESUMO

This study aimed to clarify the effects of two processed forms of American ginseng (Panax quinquefolius L.) on immunosuppression caused by cyclophosphamide (CTX) in mice. In the CTX-induced immunosuppressive model, mice were given either steamed American ginseng (American ginseng red, AGR) or raw American ginseng (American ginseng soft branch, AGS) by intragastric administration. Serum and spleen tissues were collected, and the pathological changes in mice spleens were observed by conventional HE staining. The expression levels of cytokines were detected by ELISA, and the apoptosis of splenic cells was determined by western blotting. The results showed that AGR and AGS could relieve CTX-induced immunosuppression through the enhanced immune organ index, improved cell-mediated immune response, increased serum levels of cytokines (TNF-α, IFN-γ, and IL-2) and immunoglobulins (IgG, IgA, and IgM), as well as macrophage activities including carbon clearance and phagocytic index. AGR and AGS downregulated the expression of BAX and elevated the expression of Bcl-2, p-P38, p-JNK, and p-ERK in the spleens of CTX-injected animals. Compared to AGS, AGR significantly improved the number of CD4+CD8-T lymphocytes, the spleen index, and serum levels of IgA, IgG, TNF-α, and IFN-γ. The expression of the ERK/MAPK pathway was markedly increased. These findings support the hypothesis that AGR and AGS are effective immunomodulatory agents capable of preventing immune system hypofunction. Future research may investigate the exact mechanism to rule out any unforeseen effects of AGR and AGS.


Assuntos
Panax , Fator de Necrose Tumoral alfa , Camundongos , Animais , Fator de Necrose Tumoral alfa/farmacologia , Ciclofosfamida/efeitos adversos , Terapia de Imunossupressão , Citocinas/metabolismo , Macrófagos , Imunoglobulina G/farmacologia , Transdução de Sinais , Imunoglobulina A/farmacologia
10.
Toxicol Lett ; 381: 1-12, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061208

RESUMO

Epigenetic has been implicated in pulmonary fibrosis. However, there is limited information regarding the biological role of the epigenetic reader MeCP2 in pulmonary fibrosis. The aim of this study was to investigate the role of MeCP2 and its target WIF1 in pulmonary fibrosis. The pathological changes and collagen depositions was analyzed by H&E, Masson's Trichrome Staining and Sirius Red staining. MeCP2, WIF1, α-SMA, Wnt1, ß-catenin, and collagen I expression were analyzed by western blotting, RT-qPCR, immunohistochemistry, immunofluorescence, respectively. The effects of MeCP2 on pulmonary fibrosis involve epigenetic mechanisms, using cultured cells, animal models, and clinical samples. Herein, our results indicated that MeCP2 level was up-regulated, while WIF1 was decreased in Bleomycin (BLM)-induced mice pulmonary fibrosis tissues, patients pulmonary fibrosis tissues and TGF-ß1-induced lung fibroblast. Knockdown of MeCP2 by siRNA can rescue WIF1 downregulation in TGF-ß1-induced lung fibroblast, inhibited lung fibroblast activation. The DNA methylation inhibitor 5-azadC-treated lung fibroblasts have increased WIF1 expression with reduced MeCP2 association. In addition, we found that reduced expression of WIF1 caused by TGF-ß1 is associated with the promoter methylation status of WIF1. Moreover, in vivo studies revealed that knockdown of MeCP2 mice exhibited significantly ameliorated pulmonary fibrosis, decreased interstitial collagen deposition, and increased WIF1 expression. Taken together, our study showed that epigenetic reader MeCP2 repressed WIF1 facilitates lung fibroblast proliferation, migration and pulmonary fibrosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteína 2 de Ligação a Metil-CpG , Fibrose Pulmonar , Animais , Camundongos , Bleomicina/toxicidade , Proliferação de Células , Colágeno/metabolismo , Epigênese Genética , Fibroblastos , Pulmão , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/farmacologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
11.
Eur J Pharmacol ; 938: 175398, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36455647

RESUMO

Cardiac fibroblasts (CFs) drive extracellular matrix remodeling after inflammatory injury, leading to cardiac fibrosis and diastolic dysfunction. Recent studies described the role of epigenetics in cardiac fibrosis. Nevertheless, detailed reports on epigenetics regulating CFs pyroptosis and describing their implication in cardiac fibrosis are still unclear. Here, we found that DNMT3A reduces the expression of lncRNA Neat1 and promotes the NLRP3 axis leading to CFs pyroptosis, using cultured cells, animal models, and clinical samples to shed light on the underlying mechanism. We report that pyroptosis-related genes are increased explicitly in cardiac fibrosis tissue and LPS-treated CFs, while lncRNA Neat1 decreased. Mechanistically, we show that loss of DNMT3A or overexpression of lncRNA Neat1 in CFs after LPS treatment significantly enhances CFs pyroptosis and the production of pyroptosis-related markers in vitro. It has been demonstrated that DNMT3A can decrease lncRNA Neat1, promoting NLRP3 axis activation in CFs treated with LPS. In sum, this study is the first to identify that DNMT3A methylation decreases the expression of lncRNA Neat1 and promotes CFs pyroptosis and cardiac fibrosis, suggesting that DNMT3A and NEAT1 may function as an anti-fibrotic therapy target in cardiac fibrosis.


Assuntos
Cardiomiopatias , MicroRNAs , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Piroptose/genética , Lipopolissacarídeos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fibrose , Fibroblastos/metabolismo , Cardiomiopatias/metabolismo , Epigênese Genética , MicroRNAs/genética
12.
Int J Biol Macromol ; 223(Pt A): 899-915, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36370857

RESUMO

Dysregulated glycolysis has been noted in several pathological processes characterized by supporting cell proliferation. Nonetheless, the role of glycolysis reprogramming is not well appreciated in cardiac fibrosis which is accompanied by increased fibroblasts proliferation. In this study, we investigated the cause and consequence of glycolysis reprogramming in cardiac fibrosis, using clinical samples, animal models, and cultured cells. Herein, we report that methyltransferase-like 3 (METTL3) facilitates glycolysis and cardiac fibroblasts proliferation, leading to cardiac fibrosis. The augmentation of glycolysis, an essential event during cardiac fibroblasts proliferation, is dependent on an increased expression of METTL3. A knockdown of METTL3 suppressed glycolysis, and inhibited cardiac fibroblast proliferation and cardiac fibrosis. Mechanistically, METTL3 epigenetically repressed androgen receptor (AR) expression in an m6A-YTHDF2- dependent manner, by targeting the specific AR m6A site. AR could interact with the glycolysis marker HIF-1α, and down-regulation of AR activates HIF-1α signaling, resulting in enhanced glycolysis and cardiac fibroblast proliferation. In contrast, the overexpression of AR significantly reduced the HIF-1α axis, decreased expression of glycolytic enzymes HK3, inhibited glycolysis, and repressed cardiac fibroblasts proliferation. Notably, increased METTL3 and YTHDF2 levels, decreased AR expression, increased HIF-1α and Postn expression and augmented glycolysis, and increased cardiac fibrosis were detected in human atrial fibrillation heart tissues. Our results found a novel mechanism by which METTL3-catalyzed m6A modification in cardiac fibrosis, wherein it facilitated glycolysis and cardiac fibroblasts proliferation by increasing AR methylation in an m6A-YTHDF2- dependent manner and provided new insights strategies to intervene cardiac fibrosis.


Assuntos
Fibroblastos , Glicólise , Animais , Humanos , Metilação , Fibrose , Fibroblastos/metabolismo , Proliferação de Células/genética , Metiltransferases/genética , Metiltransferases/metabolismo
13.
Free Radic Biol Med ; 193(Pt 1): 330-341, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36279972

RESUMO

BACKGROUND: Diabetes cardiac fibrosis is associated with altered DNA methylation of fibrogenic genes; however, the underlying mechanisms remain unclear. OBJECTIVES: In this study, we investigate the critical role of DNA methylation aberration-associated suppression of MTHFR in diabetes cardiac fibrosis, and the protective effects of folate on diabetes cardiac fibrosis, using cultured cells, animal models, and clinical samples. METHODS AND RESULTS: Herein, we report that DNA methylation repression of MTHFR, critically involved in diabetes cardiac fibrosis, mediates the significant protective effects of folate in a mouse model of diabetes cardiac fibrosis induced by STZ. Heart MTHFR expression was markedly suppressed in diabetes cardiac fibrosis patients and mice, accompanied by increased DNMT3A and MTHFR promoter methylation. Knockdown of DNMT3A demethylated MTHFR promoter, recovered the MTHFR loss, and alleviated the diabetes cardiac fibrosis pathology and cardiac fibroblasts pyroptosis. Mechanistically, DNMT3A epigenetically repressed MTHFR expression via methylation of the promoter. Interestingly, folate supplementation can rescue the effect of MTHFR loss in diabetes cardiac fibrosis, suggesting that inactivation of MTHFR through epigenetics is a critical mediator of diabetes cardiac fibrosis. CONCLUSIONS: The current study identifies that MTHFR repression due to aberrant DNMT3A elevation and subsequent MTHFR promoter hypermethylation is likely an important epigenetic feature of diabetes cardiac fibrosis, and folate supplementation protects against diabetes cardiac fibrosis.


Assuntos
Metilação de DNA , Diabetes Mellitus , Camundongos , Animais , Epigênese Genética , Fibrose , Ácido Fólico , Diabetes Mellitus/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética
14.
Front Nutr ; 9: 833859, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35445056

RESUMO

The mechanism by which ginsenosides from Panax quinquefolium L. transform into rare saponins by different processing methods and their antitumour effects have yet to be fully elucidated. Our study aimed to detect the effect of amino acids and processing methods on the conversion of ginsenosides in American ginseng to rare ginsenosides, using 8 monomeric ginsenosides as substrates to discuss the reaction pathway and mechanism. S180 tumour-bearing mice were established to study the antitumour effects of American ginseng total saponins (AGS-Q) or American ginseng total saponins after transformation (AGS-H) synergistic CTX. The results showed that aspartic acid was the best catalyst, and the thermal extraction method had the best effect. Under the optimal conditions, including a reaction temperature of 110°C, an aspartic acid concentration of 5%, a reaction time of 2.5 h and a liquid-solid ratio of 30 mL/g, the highest conversion of Rk1 and Rg5 was 6.58 ± 0.11 mg/g and 3.74 ± 0.05 mg/g, respectively. In the reaction pathway, the diol group saponins participated in the transformation process, and the triol group saponins basically did not participate in the transformation process. AGS-Q or AGS-H synergistic CTX, or AGS-H synergistic CTX/2 could significantly increase the tumour inhibition rate, spleen index and white blood cell count, had a significant upregulation effect on IL-2 and IL-10 immune cytokines; significantly restored the ratio of CD4+/CD8+; and significantly inhibited the level of CD4+CD25+. AGS-Q or AGS-H synergistic with CTX or CTX/2 can significantly upregulate the expression of Bax and cleaved-Caspase-3 and inhibit the expression of antiapoptotic protein Bcl-2. AGS synergistic CTX in the treatment of S180 tumour-bearing mice can improve the efficacy and reduce toxicity.

15.
Phytother Res ; 35(8): 4411-4424, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34028092

RESUMO

Successive evidence has established that maltol, a flavor-enhancing agent, could provide resistance to oxidative stress-induced tissue injury in various animal models though its benefits for aging-induced liver and kidney injuries are still undetermined. In the present work, for demonstrating maltol's ameliorative effect and probable mechanism against aging-induced liver and kidney injuries, D-galactose (D-Gal)-induced animal in vivo and HEK293 cells in vitro models were established and results demonstrated that long-term D-Gal treatment increases the accumulation of advanced glycation end products (AGEs) in liver and kidney tissues, mitigates cell viability, and arrests the cycle. Interestingly, 4-weeks maltol treatment at 50 and 100 mg/kg activated aging-associated proteins including p53, p21, and p16 followed by inhibiting malondialdehyde (MDA)'s over-production and increasing the levels of antioxidant enzymes. Therefore, decreases in cytochrome P450 E1 (CYP2E1) and 4-hydroxydecene (4-HNE)'s immunofluorescence expression levels are confirmed. Furthermore, maltol improved oxidative stress injury by activating the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. In conclusion, the purpose of the present study was to estimate the mechanistic insights into maltol's role as an antioxidant in liver and kidney cell senescence and injury, which will reflect potential of therapeutic strategy for antiaging and aging-related disease treatment.


Assuntos
Galactose , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Pironas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Envelhecimento , Animais , Galactose/efeitos adversos , Células HEK293 , Humanos , Rim/metabolismo , Fígado/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-33652652

RESUMO

Visiting natural environments could restore health and contribute to human sustainability. However, the understanding of potential linkages between restoration of visitors and nature-based tourism remains incomplete, resulting in a lack of orientation for researchers and managers. This study aimed to explore how visitors achieve restoration through nature by analyzing published literature on tourism. Using a systematic review method, this study examined destination types, participant traits, theoretical foundations, and potential restorative outcomes presented in 34 identified articles. A new framework that synthesizes relevant research and conceptualizes the restorative mechanisms of nature-based tourism from a human-nature interaction perspective was developed. Owing to the limitations in the theories, methods, cases, and the COVID-19 pandemic, interdisciplinary methods and multisensory theories are needed in the future to shed further light on the restoration of visitors through nature-based tourism. The findings provide a theoretical perspective on the consideration of nature-based tourism as a public-wellness product worldwide, and the study provides recommendations for future research in a COVID-19 or post-COVID-19 society.


Assuntos
Natureza , Turismo , COVID-19 , Previsões , Humanos , Pandemias
17.
Transpl Immunol ; 65: 101337, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32971208

RESUMO

AIM: To study the release mechanism of C-X-C motif chemokine 11 (CXCL11) and other chemokines after the co-cultivation of CD4+ and CD8+ T cells with the renal tubular epithelial cells (RTEC) in the process of allograft renal transplantation rejection. METHODS: The Human CD4+, CD8+ T cells were obtained from the blood of volunteers and kidney transplantation (Ktx) patients, and co-cultured with renal tubular epithelial cells (RTEC) in vitro. RT-PCR was run for detecting the mRNA transcription of CXCL11, IFN-induced protein of 10 (CXCL10), and IL-6 in cells after RTEC was stimulated with IFN-γ or co-cultured with CD4+ and CD8+ T cells. The concentration of CXCL11, CXCL10 and IL-6 in the culture medium was detected by Multiplex Assay after RTEC was stimulated with IFN-γ or co-cultured with CD4+ and CD8+ T cells. IFN-γ receptor antibody was used for interfering with the above reaction and the blocking effect was observed. Western blot was used for protein expression analysis. Finally, we applied renal biopsies from kidney transplantation patients with and without rejection to verify the results of the above experiments by using RT-PCR and Western blot. RESULTS: The mRNA expression of CXCL11 and CXCL10 were significantly increased after RTEC was stimulated with IFN-γ or co-cultured with CD4+ and CD8+ T cells. Multiplex Assay showed that the concentration of CXCL11 and CXCL10 in the supernatant were significantly increased in a time-dependence fashion after stimulation RTEC by IFN-γ. Anti-IFN-γ receptor1 (anti-IFN-γR1) antibody could reduce the production of CXCL11 and CXCL10 in this situation. The concentration of CXCL11 and CXCL11 in the supernatant was significantly increased with a time-dependent effect after the co-culture of CD4+ and CD8+ T cells with RTEC. The anti-IFN-γR1 blocked this effect. Our study showed that the expression levels of CXCL11 and CXCL10 were upgraded in the biopsies of patients with renal transplant rejection comparatively to pre-transplant biopsies, both at mRNA and protein levels. CONCLUSIONS: RTEC and T cells can stimulate each other during the acute rejection of allogeneic kidney transplantation and secret CXCL11,CXCL10 and other chemokines. IFN-γ plays a key role in this process.


Assuntos
Linfócitos T CD8-Positivos , Quimiocina CXCL10 , Linfócitos T CD4-Positivos , Quimiocina CXCL11 , Quimiocina CXCL9 , Células Epiteliais , Humanos
18.
Heart Lung Circ ; 29(9): 1292-1300, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32349946

RESUMO

BACKGROUND: The nomenclature of both intralobar pulmonary sequestration (ILS) and aortic origin of a pulmonary artery (AOPA) remains controversial. According to this review, both ILS and AOPA have an anomalous systemic arterial supply to all or part of the lung with venous drainage into the pulmonary veins, which leads to pulmonary hypertension, congestive heart failure, and fatal pulmonary haemorrhage. The purpose of this review was to consider whether these two rare congenital anomalies have similar anatomical, clinical and pathological characteristics. METHODS: This review was conducted by researching relevant literature using PubMed and MEDLINE databases to January 2019. All researched literature was related to the anatomical, associated anomalies, pathophysiology and clinical features of the extralobar pulmonary sequestration (ELS), ILS, and AOPA, and the therapeutic method for ILS and AOPA. RESULTS: Through research literature, it was found that ILS and AOPA may differ in terms of embryonic origin, but some of the anatomical, histopathological, physiological and clinical features of these two congenital malformations are similar. However, ELS and ILS have significant differences in their anatomical, histopathological, physiological, and clinical features. CONCLUSIONS: This study proposes that ILS and AOPA could be classified as one single condition - systemic arterialisation of the lung - and further divided into three subtypes, namely: types I, II and III. This new classification nomenclature permits the appropriate change of novel surgical techniques, which obviate the need for lobectomy or segmentectomy in specific cases, thereby minimising fatal postoperative complications.


Assuntos
Sequestro Broncopulmonar/diagnóstico , Pulmão/irrigação sanguínea , Artéria Pulmonar/anormalidades , Tomografia Computadorizada por Raios X/métodos , Humanos
19.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-826645

RESUMO

OBJECTIVE@#To compare the effect of acupoint injection and intramuscular injection with mouse nerve growth factor (mNGF) on gross motor function development of children with cerebral palsy (CP), and explore the treatment mechanism.@*METHODS@#A total of 63 children with CP were randomly divided into an observation group (32 cases, 4 cases dropped off ) and a control group (31 cases, 3 cases dropped off). Based on the routine rehabilitation therapy, the control group received intramuscular injection of mNGF(18 µg/2 mL), and the observation group received acupoint injection of mNGF at Xinshu (BL 15), Ganshu (BL 18), Pishu (BL 20), Shenshu (BL 23), Sanjiaoshu (BL 22), Shenting (GV 24), Baihui (GV 20), Fengfu (GV 16), Dazhui (GV 14), etc. Of them, 5-6 acupoints alternately were selected each time, and each acupoint was given 0.3-0.5 mL, totally 18 µg/2 mL. Both treatment were carried out once every other day for six months. Before and after treatment, the children's development of brain function was assessed using gross motor function classification system (GMFCS). Before treatment (T), after 2 (T), 4 (T) and 6 (T) months of treatment, the motor function was evaluated by gross motor function measure (GMFM-88). The systolic peak velocity (Vs), mean velocity (Vm) and vascular resistance index (RI) of anterior cerebral artery (ACA) and middle cerebral artery (MCA) were measured, and the level of N-acetyl aspartate acid (NAA), choline (Cho), lactate (Lac) and creatine (Cr) from the basal ganglia, thalamus and periventricular white mater were detected by magnetic resonance spectroscopy (MRS) technology with MAGNETOM Skyra3.0T magnetic resonance imaging system before and after treatment.@*RESULTS@#Compared with before treatment, the GMFCS classification of the observation group after treatment was significantly improved (0.05), however, the observation group had a 3.142 times of feasibility for good gross motor function development by more than level 1 compared to the control group (<0.05). After 2, 4, and 6 months of treatment, the GMFM-88 scores of the two groups showed an upward trend (<0.01), and the increase of the observation group was greater than that of the control group (<0.05). Compared with before treatment, in the ACA and MCA, the Vs and Vm increased, RI decreased in both groups after treatment (<0.01), and in the brain, NAA/Cr increased, Cho/Cr and Lac/Cr decreased (<0.01), and after treatment, the Vs, Vm of ACA and MCA and NAA/Cr of brain in the observation group were higher than those in the control group (<0.05), and the RI of ACA and MCA and Cho/Cr and Lac/Cr of brain in the observation group were lower than those in the control group (<0.05).@*CONCLUSION@#The mNGF acupoint injection has a better effect on the gross motor function in the children with cerebral palsy compared with the intramuscular injection, and the mechanism may be associated with exhibiting the double effects of acupoint effect and the targeting therapy of drug, which can effectively improve the cerebral hemodynamics and the metabolism of cerebral nervous substances.

20.
Int J Infect Dis ; 89: 72-78, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31521857

RESUMO

OBJECTIVE: To investigate varicella outbreak trends among schoolchildren during the voluntary single-dose varicella vaccine (VarV) era in Shanghai, China. METHODS: Trends in school varicella outbreaks from 2006 to 2017 were assessed using joinpoint regression models. The impacts of changes in single-dose VarV coverage among schoolchildren and implementation of post-exposure prophylaxis (PEP) strategies on outbreak trends were further analyzed. RESULTS: In total, 265 varicella outbreaks involving 3263 cases were reported in Shanghai from 2006 to 2017. The number of outbreaks showed an increasing trend from 2006 to 2017 (t=2.62, p=0.026), especially in kindergartens. The proportion of breakthrough varicella cases among all outbreak-related cases showed an increasing trend from 30.4% in 2008 to 85.7% in 2017 (t=7.45, p<0.001). Single-dose VarV coverage among schoolchildren was 88.1%, and showed a significant increase from the 1996 to the 2008 birth cohorts, followed by a non-significant decline from the 2008 to the 2014 birth cohorts. During school outbreaks in which PEP campaigns were conducted, the varicella attack rate was significantly lower than those in outbreaks without PEP campaigns (1.2% vs. 1.4%; Chi-square=23.35, p<0.001). CONCLUSIONS: Even with high coverage, single-dose VarV is insufficient to prevent school outbreaks. The administration of VarV as PEP is an appropriate intervention for varicella outbreak control prior to implementing a two-dose VarV schedule.


Assuntos
Vacina contra Varicela/administração & dosagem , Varicela/prevenção & controle , Herpesvirus Humano 3/imunologia , Adolescente , Varicela/epidemiologia , Varicela/virologia , Vacina contra Varicela/imunologia , Criança , Pré-Escolar , China/epidemiologia , Surtos de Doenças/prevenção & controle , Feminino , Herpesvirus Humano 3/genética , Humanos , Esquemas de Imunização , Incidência , Masculino , Profilaxia Pós-Exposição , Instituições Acadêmicas/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...