Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 154: 636-645, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32912493

RESUMO

In order to define translocation characteristics of 13C-photoassimilates to fruit during the fruit development stage in 'Fuji' apple, the 13C labeled tracer method was used in whole five-year-old 'Fuji'3/M26/Malus hupehensis (Pamp.) Rehder apple trees at different days after flowering (DAF). The changes in 13C translocation to the fruit, source strength of the leaves, and sink strength of the fruits were assessed. The results indicated that the δ13C value and 13C distribution rate of the fruit increased first and then decreased with the increase in the fruit development period, being higher from 120 to 135 DAF. The leaves appeared to moderately senesce in an attempt to maintain high photosynthesis during 120-135 DAF, which promoted the outward transport of photoassimilates. The single fruit weight and longitudinal and transverse diameter of the fruit increased rapidly during 120-150 DAF, which increased the sink zone for the unloading of photoassimilates in the fruit. The activity of sorbitol dehydrogenase (SDH) and amylase (AM), the content of indole-3-acetic acid (IAA), the gibberellin (GA3) and abscisic acid (ABA) in the fruit flesh, and the gene expression levels of MdSOT1, MdSOT2, MdSOT3, MdSUT1, and MdSUT4 in the fruit stalk tissue were higher during 120-135 DAF. At this point, the difference in the sorbitol content between the fruit stalk and fruit flesh was also at the highest level of the entire year. These factors together increased the sink activity of the fruit, thus improving the photoassimilate transport efficiency to the fruit.


Assuntos
Isótopos de Carbono/metabolismo , Frutas/crescimento & desenvolvimento , Malus/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Folhas de Planta
2.
Front Plant Sci ; 11: 904, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655607

RESUMO

Nitrogen (N) is one of the most required mineral elements for plant growth, and potassium (K) plays a vital role in nitrogen metabolism, both elements being widely applied as fertilizers in agricultural production. However, the exact relationship between K and nitrogen use efficiency (NUE) remains unclear. Apple dwarf rootstock seedlings (M9T337) were used to study the impacts of different K levels on plant growth, nitrogen metabolism, and carbon (C) assimilation in water culture experiments for 2 years. The results showed that both deficiency and excess K inhibited the growth and root development of M9T337 seedlings. When the K supply concentration was 0 mM and 12 mM, the biomass of each organ, root-shoot ratio, root activity and NO3 - ion flow rate decreased significantly, net photosynthetic rate (P n) and photochemical efficiency (F v/F m) being lower. Meanwhile, seedlings treated with 6 mM K+ had higher N and C metabolizing enzyme activities and higher nitrate transporter gene expression levels (NRT1.1; NRT2.1). 13C and 15N labeling results showed that deficiency and excess K could not only reduce 15N absorption and 13C assimilation accumulation of M9T337 seedlings, but also reduced the 15N distribution ratio in leaves and 13C distribution ratio in roots. These results suggest that appropriate K supply (6 mM) was optimal as it enhanced photoassimilate transport from leaves to roots and increased NUE by influencing photosynthesis, C and N metabolizing enzyme activities, nitrate assimilation gene activities, and nitrate transport.

3.
Front Plant Sci ; 11: 764, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582269

RESUMO

In order to solve the problems of nitrogen (N) losses and fruit quality degradation caused by excessive N fertilizer application, different dosages of the nitrification inhibitor, 3,4-dimethylpyrazole phosphate (DMPP) (0, 0.5, 1, 2, and 4 mg kg-1 soil), were applied during the later stage of 'Red Fuji' apple (Malus domestica Borkh.) fruit expansion in 2017 and 2018. The effects of DMPP on soil N transformation, carbon (C)-N nutrition of tree, and fruit quality were investigated. Results revealed that DMPP decreased the abundance of ammonia-oxidizing bacteria (AOB) amoA gene, increased the retention of NH4 +-N, and decreased NO3 --N concentration and its vertical migration in soil. DMPP reduced 15N loss rates and increased 15N residual and recovery rates compared to the control. 13C and 15N double isotope labeling results revealed that DMPP reduced the capacity of 15N absorption and regulation in fruits, decreased 15N accumulation in fruits and whole plant, and increased the distribution of 13C from vegetative organs to fruits. DMPP increased fruit anthocyanin and soluble sugar contents, and had no significant effect on fruit yield. The comprehensive analysis revealed that the application of 1 mg DMPP kg-1 soil during the later stage of fruit expansion effectively reduced losses due to N and alleviated quality degradation caused by excessive N fertilizer application.

4.
Ying Yong Sheng Tai Xue Bao ; 31(6): 1859-1866, 2020 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-34494737

RESUMO

A field experiment was carried out in a six-year old 'Fuji'3/M26/Malus hupehensis Rehd. apple with the 13C tracer method to examine the changes of chlorophyll fluorescence parameters, photosynthetic characteristics of leaf, sugar transporter gene expression, 13C assimilation capability and the characteristics of translocation and distribution of 13C-photoassimilates to fruit under different levels of potassium addition (K2O 0, 0.5%, 1.0%, 1.5%, 2.0%, expressed by CK, K1, K2, K3, K4, respectively). Potassium aqueous solution smear the leaves within 20 cm around the fruit at fruit enlargement stage. Compared with other treatments, K3 treatment significantly increased Rubisco enzyme activity, net photosynthetic rate, maximal photochemical efficiency of PSII, actual photochemical efficiency of PSII, coefficient of photochemical quenching, sorbitol and sucrose content, sorbitol 6-phosphate dehydrogenase (S6PDH) and sucrose phosphate synthase (SPS) enzyme activities and 13C assimilation capability of leaves. Furthermore, K3 treatment increased gene expression of sorbitol transporter MdSOT1 and MdSOT2 and sucrose transporter MdSUT4, and promoted the unloading of sugar in fruit. The 13C of self retention (self leaves and self branches) was the highest in CK (82.6%) and the lowest in K3 treatment (60.5%). With increasing potassium concentration, the 13C absorption of fruit first increased and then decreased, which was the highest in K3 treatment (1.31 mg·g-1) and the lowest in CK (0.57 mg·g-1). Our results indicated that foliage application of potassium solution improved PSII photochemical efficiency, activities of key enzymes related with carbon assimilation, synthesis ability, and outward transport ability of photosynthates in leaves, and consequently promoted the directional transportation of sugar to fruit. The amount of photoassimilates transported to fruit was the most under 1.5% K2O treatment (K3).


Assuntos
Malus , Frutas , Fotossíntese , Folhas de Planta , Potássio
5.
Front Plant Sci ; 10: 1738, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32063908

RESUMO

In order to improve the problem of poor coloring caused by high fruit nitrogen in apple production, we studied the effects of different concentrations of abscisic acid (ABA: 0, 50, 100, and 150 mg/L) and fluridone (ABA biosynthesis inhibitor) on the fruit of 'Red Fuji' apple (Malus Domestica Borkh.) in the late stage of apple development (135 days after blooming) in 2017 and 2018. The effects of these treatments on the distribution of 13C and 15N and anthocyanin synthesis in fruit were studied. The results showed that the expression levels of ABA synthesis and receptor genes in the peel and flesh were upregulated by exogenous ABA treatment. An appropriate concentration of ABA significantly increased the expression of anthocyanin synthesis genes and transcription factors and increased the content of anthocyanin in the peel. The results of 13C and 15N double isotope labeling showed that exogenous ABA coordinated the carbon-nitrogen nutrient of apple fruit in the late stage of the development, reduced the accumulation of fruit nitrogen, increased the accumulation of fruit carbon and sugar, provided a substrate for anthocyanin synthesis, or promoted anthocyanin synthesis through the sugar signal regulation mechanism. Comprehensive analysis showed that the application of 100 mg/L ABA effectively improved the problem of poor coloring caused by high fruit nitrogen in the late stage of apple development and is beneficial to the accumulation of carbon in fruit and the formation of color.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA