Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Biotechnol ; 35(1): 2258188, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38193802

RESUMO

Selenium (Se) is an essential micronutrient for humans and animals and is a powerful antioxidant that can promote reproductive and immune functions. The purpose of this study was to evaluate the effects of supplemental dietary selenium-enriched yeast (SeY) on egg quality, gut morphology and microflora in laying hens. In total, 100 HY-Line Brown laying hens (45-week old) were randomly allocated to two groups with 10 replicates and fed either a basal diet (without Se supplementation) or a basal diet containing 0.2 mg/kg Se in the form of SeY for 8 weeks. The Se supplementation did not have a significant effect on egg quality and intestinal morphology of laying hens. Based on the 16S rRNA sequencing, SeY dietary supplementation effectively modulated the cecal microbiota structure. An alpha diversity analysis demonstrated that birds fed 100 mg/kg SeY had a higher cecal bacterial diversity. SeY dietary addition elevated Erysipelotrichia (class), Lachnospiraceae (family), Erysipelotrichaceae (family) and Ruminococcus_torques_group (genus; p < .05). Analysis of microbial community-level phenotypes revealed that SeY supplementation decreased the microorganism abundance of facultatively anaerobic and potentially pathogenic phenotypes. Overall, SeY supplementation cannot significantly improve intestinal morphology; however, it modulated the composition of cecal microbiota toward a healthier gut.


Assuntos
Ração Animal , Microbioma Gastrointestinal , Selênio , Animais , Feminino , Ração Animal/análise , Galinhas/microbiologia , Dieta/veterinária , Suplementos Nutricionais , RNA Ribossômico 16S/genética , Saccharomyces cerevisiae , Selênio/farmacologia , Selênio/análise , Distribuição Aleatória
2.
Int J Biol Macromol ; 256(Pt 1): 128368, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029914

RESUMO

This study was conducted to investigate the effects of tea polyphenols (TP) and probiotics (PB) on the production performance, biochemical indices, and gut health of laying hens. A total of 400 Hy-line Brown layers (45 weeks old) were randomly assigned to 8 diet groups for 8-week feeding trial. Compared with the control basal diet (CT), dietary high dosage of TP and PB (HTP-PB) increased egg mass (P < 0.05). Supplementation with HTP-PB improved the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreased the malonic dialdehyde (MDA) content (P < 0.05) without affecting the contents of immunoglobulins in the serum. The combination of HTP and PB supplementation promoted the secretion of estradiol (E2) and progesterone (PROG) compared with treatment with TP or PB alone (P < 0.05). The combined use of HTP and PB induced higher jejunal villus height (VH) than the CT group (P < 0.05). Dietary TP and PB could optimize the functional network of intestinal microflora and the interactions between the intestinal microflora and the host. Therefore, the combined use of the high dosage of TP and PB affected laying performance, improved antioxidant capacity, and promoted intestinal health, which may be associated with regulation of the intestinal microbiota.


Assuntos
Suplementos Nutricionais , Probióticos , Animais , Feminino , Ração Animal/análise , Galinhas , Dieta/veterinária , Suplementos Nutricionais/análise , Polifenóis/farmacologia , Probióticos/farmacologia , Chá/química
3.
Hortic Res ; 8(1): 32, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33518702

RESUMO

The aroma of peach fruit is predominantly determined by the accumulation of γ-decalactone and ester compounds. A previous study showed that the biosynthesis of these aroma compounds in peach fruit is catalyzed by PpAAT1, an alcohol acyltransferase. In this work, we investigated the key active site residues responsible for γ-decalactone and ester biosynthesis. A total of 14 candidate amino acid residues possibly involved in internal esterification and 9 candidate amino acid residues possibly involved in esterification of PpAAT1 were assessed via site-directed mutagenesis. Analyses of the in vitro enzyme activities of PpAAT1 and its site-directed mutant proteins (PpAAT1-SMs) with different amino acid residue mutations as well as the contents of γ-decalactone in transgenic tobacco leaves and peach fruits transiently expressing PpAAT1 and PpAAT1-SMs revealed that site-directed mutation of H165 in the conserved HxxxD motif led to lost enzymatic activity of PpAAT1 in both internal esterification and its reactions, whereas mutation of the key amino acid residue D376 led to the total loss of γ-decalactone biosynthesis activity of PpAAT1. Mutations of 9 and 7 other amino acid residues also dramatically affected the enzymatic activity of PpAAT1 in the internal esterification and esterification reactions, respectively. Our findings provide a biochemical foundation for the mechanical biosynthesis of γ-decalactone and ester compounds catalyzed by PpAAT1 in peach fruits, which could be used to guide the molecular breeding of new peach species with more favorable aromas for consumers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...