Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 11865, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831402

RESUMO

An amino-functionalized MIL-68(Al) metal-organic framework (amino-MIL-68(Al) MOF) was synthesized by solvothermal method and then characterized by FESEM, XRD, FTIR, EDX-mapping, and BET-BJH techniques. In order to predict arsenate (As(V)) removal, a robust quadratic model (R2 > 0.99, F-value = 2389.17 and p value < 0.0001) was developed by the central composite design (CCD) method and then the genetic algorithm (GA) was utilized to optimize the system response and four independent variables. The results showed that As(V) adsorption on MOF was affected by solution pH, adsorbent dose, As(V) concentration and reaction time, respectively. Predicted and experimental As(V) removal efficiencies under optimal conditions were 99.45 and 99.87%, respectively. The fitting of experimental data showed that As(V) adsorption on MOF is well described by the nonlinear form of the Langmuir isotherm and pseudo-second-order kinetic. At optimum pH 3, the maximum As(V) adsorption capacity was 74.29 mg/g. Thermodynamic studies in the temperature range of 25 to 50 °C showed that As(V) adsorption is a spontaneous endothermic process. The reusability of MOF in ten adsorption/regeneration cycles was studied and the results showed high reusability of this adsorbent. The highest interventional effect in inhibiting As(V) adsorption was related to phosphate anion. The results of this study showed that amino-MIL-68(Al) can be used as an effective MOF with a high surface area (> 1000 m2/g) and high reusability for As(V)-contaminated water.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Adsorção , Arseniatos , Concentração de Íons de Hidrogênio , Cinética , Estruturas Metalorgânicas/química , Poluentes Químicos da Água/análise
2.
Chemosphere ; 279: 130640, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34134425

RESUMO

A three-dimensional electrochemical reactor with Ti/SnO2-Sb/ß-PbO2 anode and granular activated carbon (3DER-GAC) particle electrodes were used for degradation of 2,4-dichlorophenol (2,4-DCP). Process modeling and optimization were performed using an orthogonal central composite design (OCCD) and genetic algorithm (GA), respectively. Ti/SnO2-Sb/ß-PbO2 anode was prepared by electrochemical deposition method and then its properties were studied by FESEM, EDX, XRD, Linear sweep voltammetry and accelerated lifetime test techniques. The results showed that lead oxide was precipitated as highly compact pyramidal clusters in the form of ß-PbO2 on the electrode surface. In addition, the prepared anode had high stability (170 h) and oxygen evolution potential (2.32 V). A robust quadratic model (p-value < 0.0001 and R2 > 0.99) was developed to predict the 2,4-DCP removal efficiency in the 3DER-GAC system. Under optimal conditions (pH = 4.98, Na2SO4 concentration = 0.07 M, current density = 35 mA cm-2, GAC amount = 25 g and reaction time = 50 min), the removal efficiency of 2,4-DCP in the 3DER-GAC system and the separate electrochemical degradation process (without GAC particle electrode) were 99.8 and 71%, respectively. At a reaction time of 80 min, the TOC removal efficiencies in the 3DER-GAC and the separate electrochemical degradation system were 100 and 57.5%, respectively. Accordingly, the energy consumed in these two systems was calculated to be 0.81 and 1.57 kWh g-1 TOC, respectively. Based on the results of LC-MS analysis, possible degradation pathways of 2,4-DCP were proposed. Trimerization and ring opening reactions were the two dominant mechanisms in 2,4-DCP degradation.


Assuntos
Titânio , Poluentes Químicos da Água , Carvão Vegetal , Clorofenóis , Eletrodos , Oxirredução , Óxidos , Poluentes Químicos da Água/análise
3.
Chemosphere ; 276: 130141, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33714150

RESUMO

Traditional planar PbO2 anodes have been used extensively for the electrocatalytic degradation process. However, by using porous PbO2 anodes that have a three-dimensional architecture, the efficiency of the process can be significantly upgraded. In the current study, carbon felt (CF) with a highly porous structure and a conventional planar graphite sheet (G) were used as electrode substrate for PbO2 anodes. Both CF/ß-PbO2 and G/ß-PbO2 anodes were prepared by the anodic deposition method. The main properties of the electrodes were characterized by XRD, EDX-mapping, FESEM, and BET-BJH techniques. The electrocatalytic degradation of diuron using three-dimensional porous CF/ß-PbO2 anode was modeled and optimized by a rotatable central composite design. After optimizing the process, the ability of porous CF/ß-PbO2 and planar G/ß-PbO2 anodes to degrade and mineralize diuron was compared. The electrocatalytic degradation of the diuron was well described by a quadratic model (R2 > 0.99). Under optimal conditions, the kinetics of diuron removal using CF/ß-PbO2 anode was 3 times faster than the G/ß-PbO2 anode. The energy consumed for the complete mineralization of diuron using CF/ß-PbO2 anode was 2077 kWh kg-1 TOC. However, the G/ß-PbO2 anode removed only 65% of the TOC by consuming 54% more energy. The CF/ß-PbO2 had more stability (115 vs. 91 h), larger surface area (1.6287 vs. 0.8565 m2 g-1), and higher oxygen evolution potential (1.89 vs. 1.84 V) compared to the G/ß-PbO2. In the proposed pathways for diuron degradation, the aromatic ring and groups of carbonyl, dimethyl urea, and amide were the main targets for HO• radical attacks.


Assuntos
Herbicidas , Poluentes Químicos da Água , Carbono , Fibra de Carbono , Diurona , Eletrodos , Oxirredução , Óxidos , Porosidade , Titânio , Poluentes Químicos da Água/análise
4.
Environ Res ; 184: 109367, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32199323

RESUMO

The present study investigates the synergistic performance of the sonophotolytic-activated ZnO/persulfate (US/UV/ZnO/PS) process in the decolorization of acid blue 113 (AB113) dye from aqueous solution and its feasibility for the treatment of real textile wastewater. Decolorization of AB113 solution was modeled by central composite design-response surface methodology (CCD-RSM) and artificial neural network (ANN) approaches and optimized by CCD-RSM and genetic algorithm (GA) approaches. Statistical metrics indicated that both CCD-RSM and ANN approaches seemed satisfactory. However, the results of statistical fit measures indicated a relative superiority of CCD-RSM as compared to the ANN approach. The results of optimization of the process parameters by CCD-RSM and GA approaches appeared to be similar as follows: pH = 6.1, reaction time = 25 min, US power density = 300 W/L, ZnO = 0.88 g/L and PS = 2.43 mmol/L. The synergistic effect of the hybrid US/UV/ZnO/PS process in comparison with its individual processes (US, UV, ZnO, and PS) was found to be 54.3%. Quenching experiments discovered that and HO are the main oxidizing radicals in a mildly acidic condition of the reaction solution. The removal efficiency of AB113 in the presence of some anions decreased in the order of bicarbonate > sulfate > phosphate > nitrate > chloride. Further, the reusability feasibility of ZnO showed that the ZnO material retained its photocatalytic property after five successive cycles of reusability test, while Zn2+ ion concentration in the reaction solution was measured to be 2.81 mg/L. The findings also indicated that the integrated process application suppresses extremely chemical and electrical costs. The study of the feasibility of the US/UV/ZnO/PS process in the treatment of real textile wastewater was done by determining COD, TOC and BOD5/COD ratio. Results demonstrated that the 96.6 and 97.1% reduction of COD and TOC was achieved after 5 and 7 h reaction time, respectively. The obtained BOD5/COD ratio changed from about 0.15 (for non-treated wastewater) to about 0.61 with increasing reaction time from zero to 90 min. In conclusion, the hybrid US/UV/ZnO/PS system can be proposed as a novel and promising approach to be utilized as a pretreatment technique before a biological treatment process to facilitate the biological treatment of recalcitrant textile wastewater.


Assuntos
Águas Residuárias , Óxido de Zinco , Compostos Azo , Redes Neurais de Computação , Têxteis
5.
Environ Sci Pollut Res Int ; 26(9): 8914-8927, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30715710

RESUMO

In this study, thermochemical degradation of furfural by sulfate radical has been investigated to find the best-operating conditions. For this purpose, the response surface methodology (RSM) based on central composite design (CCD) was applied to optimize the five independent variables of thermally activated persulfate (TAP)/nZVI oxidation process including pH, PS concentration, furfural concentration, nZVI dosage, and heat. The ANOVA results ("P > F value" < 0.0001 and [Formula: see text] = 0.9701) showed the obtained quadratic model is acceptable to predict furfural removal. Based on the reduced quadratic model PS concentration, nZVI dosage, and heat revealed the positive effects on removal efficiency, while pH and furfural concentration had a negative effect. Accordingly, 98.4% of furfural could be removed within 60 min of reaction under the optimum conditions: pH 5.26, PS concentration of 20.52 mM, furfural concentration of 84.32 mg/L, nZVI dosage of 1.15 mg/L, and a temperature of 79 °C. In such circumstances, the furfural removal efficiency for TAP, PS/nZVI, PS, and nZVI was 94.5, 9, 3, and 2%, respectively. Therefore, based on the synergy index (SI) values, the combination of PS, nZVI, and heat can lead to a synergistic effect in the performance of the thermochemical process.


Assuntos
Furaldeído/química , Sulfatos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Oxirredução , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...