Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39026396

RESUMO

This study presents a comprehensive genomic exploration, biochemical characterization, and the identification of antibiotic resistance and specialty genes of Pediococcus acidilactici BCB1H strain. The functional characterization, genetic makeup, biological activities, and other considerable parameters have been investigated in this study with a prime focus on antibiotic resistance and specialty gene profiles. The results of this study revealed the unique susceptibility patterns for antibiotic resistance and specialty genes. BCB1H had good in vitro probiotic properties, which survived well in simulated artificial gastrointestinal fluid, and exhibited acid and bile salt resistance. BCB1H didn't produce hemolysis and had certain antibiotic sensitivity, making it a relatively safe LAB strain. Simultaneously, it had good self-coagulation characteristics and antioxidant activity. The EPS produced by BCB1H also had certain antioxidant activity and hypoglycemic function. Moreover, the genome with a 42.4 % GC content and a size of roughly 1.92 million base pairs was analyzed in the genomic investigations. The genome annotation identified 192 subsystems and 1,895 genes, offering light on the metabolic pathways and functional categories found in BCB1H. The identification of specialty genes linked to the metabolism of carbohydrates, stress response, pathogenicity, and amino acids highlighted the strain's versatility and possible uses. This study establishes the groundwork for future investigations by highlighting the significance of using multiple strains to investigate genetic diversity and experimental validation of predicted genes. The results provide a roadmap for utilizing P. acidilactici BCB1H's genetic traits for industrial and medical applications, opening the door to real-world uses in industries including food technology and medicine.

2.
Front Biosci (Landmark Ed) ; 29(5): 176, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38812301

RESUMO

BACKGROUND: Listeria monocytogenes, a Gram-positive bacterium, is a prominent foodborne pathogen that causes listeriosis and poses substantial health hazards worldwide. The continuing risk of listeriosis outbreaks underlies the importance of designing an effective prevention strategy and developing a robust immune response by reverse vaccinology approaches. This study aimed to provide a critical approach for developing a potent multiepitope vaccine against this foodborne disease. METHODS: A chimeric peptide construct containing 5 B-cell epitopes, 16 major histocompatibility complex I (MHC-I) epitopes, and 18 MHC-II epitopes were used to create a subunit vaccination against L. monocytogenes. The vaccine safety was evaluated by several online methods, and molecular docking was performed using ClusPro to determine the binding affinity. Immune simulation was performed using the C-ImmSimm server to demonstrate the immune response. RESULTS: The results validated the antigenicity, non-allergenicity, and nontoxicity of the chimeric peptide construct, confirming its suitability as a subunit vaccine. Molecular docking showed a good score of 1276.5 and molecular dynamics simulations confirmed the construct's efficacy, demonstrating its promise as a good candidate for listeriosis prophylaxis. The population coverage was as high as 91.04% with a good immune response, indicating good antigen presentation with dendritic cells and production of memory cells. CONCLUSIONS: The findings of this study highlight the potential of the designed chimeric peptide construct as an effective subunit vaccine against Listeria, paving the way for future advances in preventive methods and vaccine design.


Assuntos
Vacinas Bacterianas , Biologia Computacional , Listeria monocytogenes , Listeriose , Simulação de Acoplamento Molecular , Vacinas de Subunidades Antigênicas , Listeria monocytogenes/imunologia , Vacinas Bacterianas/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Listeriose/prevenção & controle , Listeriose/imunologia , Listeriose/microbiologia , Biologia Computacional/métodos , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Humanos , Epitopos/imunologia , Simulação de Dinâmica Molecular , Animais , Doenças Transmitidas por Alimentos/prevenção & controle , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/imunologia , Imunoinformática
3.
Front Biosci (Landmark Ed) ; 29(4): 147, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38682181

RESUMO

BACKGROUND: Lactiplantibacillus plantarum 12-3 holds great promise as a probiotic bacterial strain, yet its full potential remains untapped. This study aimed to better understand this potential therapeutic strain by exploring its genomic landscape, genetic diversity, CRISPR-Cas mechanism, genotype, and mechanistic perspectives for probiotic functionality and safety applications. METHODS: L. plantarum 12-3 was isolated from Tibetan kefir grains and, subsequently, Illumina and Single Molecule Real-Time (SMRT) technologies were used to extract and sequence genomic DNA from this organism. After performing pan-genomic and phylogenetic analysis, Average Nucleotide Identity (ANI) was used to confirm the taxonomic identity of the strain. Antibiotic resistance gene analysis was conducted using the Comprehensive Antibiotic Resistance Database (CARD). Antimicrobial susceptibility testing, and virulence gene identification were also included in our genomic analysis to evaluate food safety. Prophage, genomic islands, insertion sequences, and CRISPR-Cas sequence analyses were also carried out to gain insight into genetic components and defensive mechanisms within the bacterial genome. RESULTS: The 3.4 Mb genome of L. plantarum 12-3, was assembled with 99.1% completeness and low contamination. A total of 3234 genes with normal length and intergenic spacing were found using gene prediction tools. Pan-genomic studies demonstrated gene diversity and provided functional annotation, whereas phylogenetic analysis verified taxonomic identity. Our food safety study revealed a profile of antibiotic resistance that is favorable for use as a probiotic. Analysis of insertional sequences, genomic islands, and prophage within the genome provided information regarding genetic components and their possible effects on evolution. CONCLUSIONS: Pivotal genetic elements uncovered in this study play a crucial role in bacterial defense mechanisms and offer intriguing prospects for future genome engineering efforts. Moreover, our findings suggest further in vitro and in vivo studies are warranted to validate the functional attributes and probiotic potential of L. plantarum 12-3. Expanding the scope of the research to encompass a broader range of L. plantarum 12-3 strains and comparative analyses with other probiotic species would enhance our understanding of this organism's genetic diversity and functional properties.


Assuntos
Genoma Bacteriano , Kefir , Filogenia , Probióticos , Tibet , Kefir/microbiologia , Farmacorresistência Bacteriana/genética , Lactobacillus plantarum/genética , Antibacterianos/farmacologia , Sequenciamento Completo do Genoma , Sistemas CRISPR-Cas
4.
Artigo em Inglês | MEDLINE | ID: mdl-38613617

RESUMO

Due to its alleged health advantages, several uses in biotechnology and food safety, the well-known probiotic strain Lactiplantibacillus plantarum K25 has drawn interest. This in-depth investigation explores the genetic diversity, makeup, and security characteristics of the microbial genome of L. plantarum K25, providing insightful knowledge about its genotypic profile and functional characteristics. Utilizing cutting-edge bioinformatics techniques like comparative genomics, pan-genomics, and genotypic profiling was carried out to reveal the strain's multidimensional potential in various fields. The results not only add to our understanding of the genetic makeup of L. plantarum K25 but also show off its acceptability in various fields, notably in biotechnology and food safety. The explanation of evolutionary links, which highlights L. plantarum K25's aptitude as a probiotic, is one notable finding from this research. Its safety profile, which is emphasized by the absence of genes linked to antibiotic resistance, is crucial and supports its status as a promising probiotic option.

5.
Front Microbiol ; 14: 1265188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37817753

RESUMO

Sufficient intake of probiotics has been shown to help in the digestion, protect the body against pathogenic microorganisms and boost the immune system. Recently, due to high prevalence of milk allergies and lactose intolerance in population, the non-dairy based probiotic alternative are becoming increasing popular. In this context, the oat milk and soya milk-based fermented products can be an ideal alternative for the development of Lactic acid bacteria bacteria based probiotics. These bacteria can not only improve the product's flavor and bioavailability but also increases its antibacterial and antioxidant capabilities due to fermentation process. The purpose of the resent work was to assess the antioxidant and probiotic properties of oat and soy milk that had been fermented with three different strains of Lactiplantibacillus plantarum (L. plantarum) including L. plantarum 12-3, L. plantarum K25, and L. plantarum YW11 isolated from Tibetan Kefir. Different validated assays were used to evaluate the probiotic properties, adhesion and survival in the digestive system (stomach, acid and bile salts resistance), antioxidant and antimicrobial activities and safety (ABTS and DPPH scavenging assays) of these strains. Results of the study showed that soya milk and oat milk fermented with L. plantarum strains possess promising probiotic, antibacterial and antioxidant properties. These results can be helpful to produce dairy-free probiotic replacements, which are beneficial for those who are unable to consume dairy products due to dietary or allergic restrictions.

6.
Acta Biochim Pol ; 70(3): 661-669, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37676999

RESUMO

Mercury is a major pollutant in the environment due to its high concentration in the soil. In this study, a mercuric reductase was extracted from Pseudomonas aeruginosa. The sequence of the enzyme was retrieved from the literature and structural homologs were identified. The protein bonded with Mercuric compounds and their interaction was briefly studied. Autodock Vina was used to perform a molecular docking with the target protein. Results showed that the sequence consists of most of the random coil 44.74% followed by α-helix and B-turns. Moreover, the protein was predicted to have a FAD/NAD(P)-binding domain. The virulence factor prediction using different approaches of Virulentpred and VICMpred suggested that P00392 is non-toxic. Next, the mutational analyses were performed to predict the active site residues in the resulting models and to determine mutants. The results show that the enzyme is involved in the bioremediation of mercury by using in-silico techniques. Finally, molecular docking studies were conducted on the best-selected model to find the active site residues and to generate a pattern of interaction to understand the mode of action of the substrate and its catalytic activity which refers to the binding with mercury.


Assuntos
Poluentes Ambientais , Mercúrio , Simulação de Acoplamento Molecular , Domínios Proteicos
7.
ACS Omega ; 8(37): 33358-33366, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744851

RESUMO

Recently, nanobiotechnology has attracted a lot of attention, as it is a rapidly emerging field that is still growing and developing efficient and advanced therapeutic protocols under the umbrella of nanomedicine. It can revolutionize solutions to biomedical problems by developing effective treatment protocols and therapeutics. However, focus and research are still required to make these therapeutics more effective and safer to use. In this study, iron oxide nanoparticles were synthesized from Madhuca indica extract using green synthesis protocols. The nanoparticles were further characterized based on their absorption spectrum, size, structural morphology, and other related parameters. Biological assays were also performed to evaluate biological applications for the synthesized nanoparticles. In silico analysis was performed to assess the druglike properties of synthesized nanoparticles. The results proved an optimized synthesis of the iron oxide nanoparticles with the size of 56 nm confirmed by SEM. The FTIR analysis predicted the presence of nitro and carbonyl groups in the synthesized nanoparticles. The 81% DPPH inhibition confirmed the antioxidant activity, and the 96.20% inhibition of egg albumin protein confirmed the anti-inflamatory activity. Additionally, the 73.26% inhibition of α-amylase, which was more than that of the control used, confirmed the antidiabetic activity. The ADMET analysis confirmed the synthesized nanoparticles as potential therapeutic candidates as well. However, further evaluation for safety concerns is still required to use these FeONPs as potential therapeutic agents. This study can be proved as a significant contribution to the scientific community and a gateway to the future scientists who are willing to work on nanomedicine and nanobiotechnology. ADMET analysis confirmed the synthesized nanoparticles as potential therapeutic candidates as well. However, further evaluation for safety concerns is still required to use these FeONPs and potential therapeutic agents.

8.
Front Microbiol ; 14: 1214478, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455721

RESUMO

This study aimed to investigate the intricate genetic makeup of the Lactiplantibacillus plantarum K25 strain by conducting a comprehensive analysis of comparative genomics. The results of our study demonstrate that the genome exhibits a high-level efficiency and compactness, comprising a total of 3,199 genes that encode proteins and a GC content of 43.38%. The present study elucidates the evolutionary lineage of Lactiplantibacillus plantarum strains through an analysis of the degree of gene order conservation and synteny across a range of strains, thereby underscoring their closely interrelated evolutionary trajectories. The identification of various genetic components in the K25 strain, such as bacteriocin gene clusters and prophage regions, highlights its potential utility in diverse domains, such as biotechnology and medicine. The distinctive genetic elements possess the potential to unveil innovative therapeutic and biotechnological remedies in future. This study provides a comprehensive analysis of the L. plantarum K25 strain, revealing its remarkable genomic potential and presenting novel prospects for utilizing its unique genetic features in diverse scientific fields. The present study contributes to the existing literature on Lactiplantibacillus plantarum and sets the stage for prospective investigations and practical implementations that leverage the exceptional genetic characteristics of this adap organism.

9.
Bioinform Biol Insights ; 17: 11779322231182560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377793

RESUMO

Targeted delivery of therapeutic anticancer chimeric molecules enhances the efficacy of drug by improving cellular uptake and circulation time. Engineering the molecules to facilitate the specific interaction between chimeric protein and its receptor is critical to elucidate biological mechanism as well as accuracy in modeling of complexes. A theoretically designed novel protein-protein interfaces can serve as a bottom-up method for comprehensive understanding of interacting protein residues. This study was aimed for in silico analyses of a chimeric fusion protein against breast cancer. The amino acid sequences of the interleukin 24 (IL-24) and LK-6 peptide were used to design the chimeric fusion protein via a rigid linker. The secondary and tertiary structures along with physicochemical properties by ProtParam and solubility were predicted using online software. The validation and quality of the fusion protein was confirmed by Rampage and ERRAT2. The newly designed fusion construct has a total length of 179 amino acids. The top-ranked structure from alpha fold2 showed 18.1 KD molecular weight by ProtParam, quality factor of 94.152 by ERRAT, and a valid structure by a Ramachandran plot with 88.5% residues in the favored region. Finally, the docking and simulation studies were performed using HADDOCK and Desmond module of Schrodinger. The quality, validity, interaction analysis, and stability of the fusion protein depict a functional molecule. The fusion gene IL24-LK6 after cloning and expression in a suitable prokaryotic cell might be a useful candidate for developing a novel anticancer therapy.

10.
Front Microbiol ; 14: 1157615, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152722

RESUMO

The comparative genomic analysis of Lactiplantibacillus plantarum YW11 (L. plantarum YW11) isolated from Tibetan kefir involves comparison of the complete genome sequences of the isolated strain with other closely related L. plantarum strains. This type of analysis can be used to identify the genetic diversity among strains and to explore the genetic characteristics of the YW11 strain. The genome of L. plantarum YW11 was found to be composed of a circular single chromosome of 4,597,470 bp with a G + C content of 43.2%. A total of 4,278 open reading frames (ORFs) were identified in the genome and the coding density was found to be 87.8%. A comparative genomic analysis was conducted using two other L. plantarum strains, L. plantarum C11 and L. plantarum LMG21703. Genomic comparison revealed that L. plantarum YW11 shared 72.7 and 75.2% of gene content with L. plantarum C11 and L. plantarum LMG21703, respectively. Most of the genes shared between the three L. plantarum strains were involved in carbohydrate metabolism, energy production and conversion, amino acid metabolism, and transcription. In this analysis, 10 previously sequenced entire genomes of the species were compared using an in-silico technique to discover genomic divergence in genes linked with carbohydrate intake and their potential adaptations to distinct human intestinal environments. The subspecies pan-genome was open, which correlated with its extraordinary capacity to colonize several environments. Phylogenetic analysis revealed that the novel genomes were homogenously grouped among subspecies of l Lactiplantibacillus. L. plantarum was resistant to cefoxitin, erythromycin, and metronidazole, inhibited pathogens including Listeria monocytogenes, Clostridium difficile, Vibrio cholera, and others, and had excellent aerotolerance, which is useful for industrial operations. The comparative genomic analysis of L. plantarum YW11 isolated from Tibetan kefir can provide insights into the genetic characteristics of the strain, which can be used to further understand its role in the production of kefir.

11.
Biomedicines ; 11(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37189659

RESUMO

BCR-ABL1 is a fusion protein as a result of a unique chromosomal translocation (producing the so-called Philadelphia chromosome) that serves as a clinical biomarker primarily for chronic myeloid leukemia (CML); the Philadelphia chromosome also occurs, albeit rather rarely, in other types of leukemia. This fusion protein has proven itself to be a promising therapeutic target. Exploiting the natural vitamin E molecule gamma-tocotrienol as a BCR-ABL1 inhibitor with deep learning artificial intelligence (AI) drug design, this study aims to overcome the present toxicity that embodies the currently provided medications for (Ph+) leukemia, especially asciminib. Gamma-tocotrienol was employed in an AI server for drug design to construct three effective de novo drug compounds for the BCR-ABL1 fusion protein. The AIGT's (Artificial Intelligence Gamma-Tocotrienol) drug-likeliness analysis among the three led to its nomination as a target possibility. The toxicity assessment research comparing AIGT and asciminib demonstrates that AIGT, in addition to being more effective nonetheless, is also hepatoprotective. While almost all CML patients can achieve remission with tyrosine kinase inhibitors (such as asciminib), they are not cured in the strict sense. Hence it is important to develop new avenues to treat CML. We present in this study new formulations of AIGT. The docking of the AIGT with BCR-ABL1 exhibited a binding affinity of -7.486 kcal/mol, highlighting the AIGT's feasibility as a pharmaceutical option. Since current medical care only exclusively cures a small number of patients of CML with utter toxicity as a pressing consequence, a new possibility to tackle adverse instances is therefore presented in this study by new formulations of natural compounds of vitamin E, gamma-tocotrienol, thoroughly designed by AI. Even though AI-designed AIGT is effective and adequately safe as computed, in vivo testing is mandatory for the verification of the in vitro results.

12.
ChemistrySelect ; 7(36): e202201793, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36249082

RESUMO

In silico studies in terms of density functional theory (DFT), molecular docking, and ADMET (absorption, distribution, metabolism, excretion and toxicity) were performed for 55 thiazolidinones compounds derived from different amines and aldehydes. DFT is a computational quantum mechanical modeling method used to predict the various properties of the compounds. Different parameters such as Electronegativity (x), Chemical Hardness (ŋ), Chemical Potential (µ), Ionization potential (IP), and Electron Affinity (EA), etc. were calculated by Koopmans theorem. The compounds were docked with Molecular Operating Environment (MOE) software using already reported PDB files of BChE, AChE, and α-glucosidase. To analyze the Spike Glycoprotein of SARS-Cov-2 and heterocyclic compounds, molecular interactions study was carried out between Spike Glycoprotein of SARS-Cov-2 (6VXX) and 55 synthetic heterocyclic compounds. It was performed by the utilization of PyRx Virtual Screening Tool and AutoDock Vina based virtual environment was used in PyRx. Maximum binding affinity was observed with compound A7 which was -8.7 kcal/mol and then with A5 which was -8.5 respectively. In the case of the AChE enzyme, B5 has a maximum docking score of -12.9027 kcal/mol while C7 depicted the maximum score for the BChE enzyme with a value of -8.6971 kcal/mol. The docking studies revealed that C6 compound has maximum binding capacity toward glucosidase (-14.8735 kcal/mol). ADMET properties of under consideration compounds were determined by Swiss online-based software which concluded that these molecules have a drug-like properties and having no violation.

14.
Mini Rev Med Chem ; 22(20): 2608-2623, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422211

RESUMO

Hypothetical proteins (HPs) are non-predicted sequences that are identified only by open reading frames in sequenced genomes, but their protein products remain uncharacterized by any experimental means. The genome of every species consists of HPs that are involved in various cellular processes and signaling pathways. Annotation of HPs is important as they play a key role in disease mechanisms, drug designing, vaccine production, antibiotic production, and host adaptation. In the case of bacteria, 25-50% of the genome comprises HPs, which are involved in metabolic pathways and pathogenesis. The characterization of bacterial HPs helps to identify virulent proteins that are involved in pathogenesis. This can be done using in-silico studies, which provide sequence analogs, physiochemical properties, cellular or subcellular localization, structure and function validation, and protein-protein interactions. The most diverse types of virulent proteins are exotoxins, endotoxins, and adherent virulent factors that are encoded by virulent genes present on the chromosomal DNA of the bacteria. This review evaluates virulent HPs of pathogenic bacteria, such as Staphylococcus aureus, Chlamydia trachomatis, Fusobacterium nucleatum, and Yersinia pestis. The potential of these HPs as a drug target in bacteria-caused infectious diseases, along with the mode of action and treatment approaches, has been discussed.


Assuntos
Proteínas de Bactérias , Vacinas , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis , Endotoxinas , Exotoxinas
15.
Bioengineering (Basel) ; 10(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36671583

RESUMO

The unexpected appearance of the monkeypox virus and the extensive geographic dispersal of cases have prompted researchers to concentrate on potential therapeutic approaches. In addition to its vaccine build techniques, there should be some multiple integrated antiviral active compounds because of the MPV (monkeypox virus) outbreak in 2022. This study offers a computational engineering-based de novo drug discovery mediated by random antiviral active compounds that were screened against the virulent protein MPXVgp169, as one of the key players directing the pathogenesis of the virus. The screening of these candidates was supported by the use of 72 antiviral active compounds. The top candidate with the lowest binding affinity was selected for the engineering of chains or atoms. Literature assisted to identify toxic chains or atoms that were impeding the stability and effectiveness of antiviral compounds to modify them for enhanced efficacy. With a binding affinity of -9.4 Kcal/mol after chain, the lipophilicity of 0.41, the water solubility of 2.51 as soluble, and synthetic accessibility of 6.6, chain-engineered dolutegravir was one of the best active compounds, as proved by the computational engineering analysis. This study will revolutionize the era of drug engineering as a potential therapeutic strategy for monkeypox infection.

16.
J Infect Public Health ; 14(7): 938-946, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34119848

RESUMO

BACKGROUND: Since the SARS-CoV-2 outbreak in December 2019 in Wuhan, China, the virus has infected more than 153 million individuals across the world due to its human-to-human transmission. The USA is the most affected country having more than 32-million cases till date. Sudden high fever, pneumonia and organ failure have been observed in infected individuals. OBJECTIVES: In the current situation of emerging viral disease, there is no specific vaccine, or any therapeutics available for SARS-CoV-2, thus there is a dire need to design a potential vaccine to combat the virus by developing immunity in the population. The purpose of present study was to develop a potential vaccine by targeting B and T-cell epitopes using bioinformatics approaches. METHODS: B- and T-cell epitopes are predicted from novel M protein-SARS-CoV-2 for the development of a unique multiple epitope vaccine by applying bioinformatics approaches. These epitopes were analyzed and selected for their immunogenicity, antigenicity scores, and toxicity in correspondence to their ability to trigger immune response. In combination to epitopes, best multi-epitope of potential immunogenic property was constructed. The epitopes were joined using EAAAK, AAY and GPGPG linkers. RESULTS: The constructed vaccine showed good results of worldwide population coverage and promising immune response. This constructed vaccine was subjected to in-silico immune simulations by C-ImmSim. Chimeric protein construct was cloned into PET28a (+) vector for expression study in Escherichia coli using snapgene. CONCLUSION: This vaccine design proved effective in various computer-based immune response analysis as well as showed good population coverage. This study is solely dependent on developing M protein-based vaccine, and these in silico findings would be a breakthrough in the development of an effective vaccine to eradicate SARS-CoV-2 globally.


Assuntos
COVID-19 , SARS-CoV-2 , China , Biologia Computacional , Epitopos de Linfócito B , Humanos , Simulação de Acoplamento Molecular , Glicoproteína da Espícula de Coronavírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...