Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Funct ; 42(2): e3964, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38439154

RESUMO

Kaempferol, a flavonoid compound found in various fruits, vegetables, and medicinal plants, has garnered increasing attention due to its potential neuroprotective effects in neurological diseases. This research examines the existing literature concerning the involvement of kaempferol in neurological diseases, including stroke, Parkinson's disease, Alzheimer's disease, neuroblastoma/glioblastoma, spinal cord injury, neuropathic pain, and epilepsy. Numerous in vitro and in vivo investigations have illustrated that kaempferol possesses antioxidant, anti-inflammatory, and antiapoptotic properties, contributing to its neuroprotective effects. Kaempferol has been shown to modulate key signaling pathways involved in neurodegeneration and neuroinflammation, such as the PI3K/Akt, MAPK/ERK, and NF-κB pathways. Moreover, kaempferol exhibits potential therapeutic benefits by enhancing neuronal survival, attenuating oxidative stress, enhancing mitochondrial calcium channel activity, reducing neuroinflammation, promoting neurogenesis, and improving cognitive function. The evidence suggests that kaempferol holds promise as a natural compound for the prevention and treatment of neurological diseases. Further research is warranted to elucidate the underlying mechanisms of action, optimize dosage regimens, and evaluate the safety and efficacy of this intervention in human clinical trials, thereby contributing to the advancement of scientific knowledge in this field.


Assuntos
Doenças do Sistema Nervoso , Fármacos Neuroprotetores , Humanos , Neuroproteção , Doenças Neuroinflamatórias , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Fosfatidilinositol 3-Quinases , Doenças do Sistema Nervoso/tratamento farmacológico
3.
Mol Biol Rep ; 50(1): 173-183, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36319784

RESUMO

BACKGROUND: Seemingly, the Matrix metalloproteinases (MMPs) play a role in the etiopathogenesis of coronavirus disease 2019 (COVID-19). Here in this study, we determined the association of MMP9 rs3918242, MMP3 rs3025058, and MMP2 rs243865 polymorphisms with the risk of COVID-19, especially in those with neurological syndrome (NS). METHODS: We enrolled 500 patients with COVID-19 and 500 healthy individuals. To genotype the target SNPs, the Real-time allelic discrimination technique was used. To determine serum levels of MMPs, Enzyme-linked immunosorbent assay (ELISA) was exerted. RESULTS: The MMP9 gene rs3918242 and MMP3 gene rs3025058 SNP were significantly associated with increased COVID-19 risk and susceptibility to COVID-19 with NS. The serum level of MMP-9 and MMP-3 was significantly higher in COVID-19 cases compared with the healthy controls. Serum MMP-9 and MMP-3 levels were also higher in COVID-19 subjects with NS in comparison to the healthy controls. The polymorphisms in MMP genes were not associated with serum level of MMPs. CONCLUSION: MMP9 and MMP3 gene polymorphisms increases the susceptibility to COVID-19 as well as COVID-19 with neurologic syndrome, but they probably have no role in the regulation of serum MMP-9 and MMP-3 levels.


Assuntos
COVID-19 , Metaloproteinase 9 da Matriz , Humanos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 3 da Matriz/genética , Predisposição Genética para Doença , COVID-19/genética , Genótipo , Polimorfismo de Nucleotídeo Único/genética
4.
Prog Biophys Mol Biol ; 172: 3-14, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35405185

RESUMO

Today, there is a growing interest nowadays in the use of herbal substances as cancer therapeutic agents. Over recent years, Xanthohumol (XTL) has been brought out as a prenylated chalcone that is found in hops (Humulus lupulus) and beer. XTL is being investigated for its potential properties, and it has been found to have various biological effects, including anti-microbial, anti-viral, and immunomodulatory. Other than these biological effects, it has also been found that XTL exerts anti-tumor effects. In the beginning, XTL, by modulating cell signaling pathways, including ERK, AKT, NF-κB, AMPK, Wnt/ß-catenin, and Notch signaling in cancer cells, inhibits tumor cell functions. Moreover, XTL, by inducing apoptotic pathways, either intrinsic or extrinsic, promotes cancer cell death and arrests the cell cycle. Furthermore, XTL inhibits metastasis, angiogenesis, cancer stemness, drug resistance, cell respiration, etc., which results in tumor aggressiveness inhibition. XTL has low solubility in water, and it has been hypothesized that some modifications, including biotinylation, can improve its pharmacogenetic characteristics. Additionally, XTL derivates such as dihydroXTL and tetrahydroXTL can be helpful for more anti-tumor activities. Using XTL with other anti-tumor agents is another approach to overcome tumor cell resistance. XTL or its derivatives, it is believed, might provide novel chemotherapeutic methods in future cancer therapy.


Assuntos
Antineoplásicos , Humulus , Neoplasias , Propiofenonas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Neoplasias/tratamento farmacológico , Propiofenonas/farmacologia , Propiofenonas/uso terapêutico
5.
Semin Cancer Biol ; 86(Pt 3): 951-959, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34600095

RESUMO

Gastric cancer is the fourth most common cause of cancer-linked deaths in the world. Gastric tumor cells have biological characteristics such as rapid proliferation, high invasiveness, and drug resistance, which result in recurrence and poor survival. Helicobacter pylori (H. pylori) has been proposed as a first-class carcinogen for gastric cancer according to the 1994 world health organization (WHO) classification. One of the important mechanisms by which H. pylori affects the gastric environment and promotes carcinogenesis is triggering inflammation. H. pylori induces an inflammatory response and a plethora of different signal transduction processes, leading to gastric mucosal disturbance, chronic gastritis, and a multi-step complex pathway that initiates carcinogenesis. It seems undeniable that the interaction between various cell types, including immune cells, gastric epithelium, glands, and stem cells, is vital for the progression and development of carcinogenesis concerning H. pylori. The interactions of H. pylori with surrounding cells play a key role in cancer progression. In this review, we discuss the interplay between H. pylori and tumor-supportive cells, including mesenchymal stem cells (MSCs), cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid derived-suppressor cells (MDSCs) in gastric cancer. It is hoped that clarifying the specific mechanisms for 'cross-talk' between H. pylori and these cells will provide promising strategies for developing new treatments.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Helicobacter pylori/fisiologia , Neoplasias Gástricas/etiologia , Infecções por Helicobacter/complicações , Infecções por Helicobacter/patologia , Carcinogênese , Células Estromais/patologia
6.
Cell Transplant ; 30: 9636897211054498, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34807749

RESUMO

C-X-C chemokine receptor type 4 (CXCR4), initially recognized as a co-receptor for HIV, contributes to several disorders, including the WHIM (Warts, Hypogammaglobulinemia, Infections, and Myelokathexis) syndrome. CXCR4 binds to its ligand SDF-1 to make an axis involved in the homing property of stem cells. This study aimed to employ WHIM syndrome pathogenesis as an inspirational approach to reinforce cell therapies. Wild type and WHIM-type variants of the CXCR4 gene were chemically synthesized and cloned in the pCDH-513B-1 lentiviral vector. Molecular cloning of the synthetic genes was confirmed by DNA sequencing, and expression of both types of CXCR4 at the protein level was confirmed by western blotting in HEK293T cells. Human adipose-derived mesenchymal stem cells (Ad-MSCs) were isolated, characterized, and subjected to lentiviral transduction with Wild type and WHIM-type variants of CXCR4. The presence of copGFP-positive MSCs confirmed the high efficiency of transduction. The migration ability of both groups of transduced cells was then assessed by transwell migration assay in the presence or absence of a CXCR4-blocking agent. Our qRT-PCR results showed overexpression of CXCR4 at mRNA level in both groups of transduced MSCs, and expression of WHIM-type CXCR4 was significantly higher than Wild type CXCR4 (P<0.05). Our results indicated that the migration of genetically modified MSCs expressing WHIM-type CXCR4 had significantly enhanced towards SDF1 in comparison with Wild type CXCR4 (P<0.05), while it was reduced after treatment with CXCR4 antagonist. These data suggest that overexpression of WHIM-type CXCR4 could lead to enhanced and sustained expression of CXCR4 on human MSCs, which would increase their homing capability; hence it might be an appropriate strategy to improve the efficiency of cell-based therapies.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Doenças da Imunodeficiência Primária/fisiopatologia , Receptores CXCR4/metabolismo , Verrugas/fisiopatologia , Movimento Celular , Humanos
7.
Eur J Pharmacol ; 909: 174419, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34391770

RESUMO

Today, herbal-derived compounds are being increasingly studied in cancer treatment. Over the past decade, Arctigenin has been introduced as a bioactive dibenzylbutyrolactone lignan which is found in Chinese herbal medicines. In addition to anti-microbial, anti-inflammatory, immune-modulatory functions, Arctigenin has attracted growing attention due to its anti-tumor capabilities. It has been shown that Arctigenin can induce apoptosis and necrosis and abolish drug resistance in tumor cells by inducing apoptotic signaling pathways, caspases, cell cycle arrest, and the modulating proteasome. Moreover, Arctigenin mediates other anti-tumor functions through several mechanisms. It has been demonstrated that Arctigenin can act as an anti-inflammatory compound to inhibit inflammation in the tumor microenvironment. It also downregulates factors involved in tumor metastasis and angiogenesis, such as matrix metalloproteinases, N-cadherin, TGF-ß, and VEGF. Additionally, Arctigenin, through modulation of MAPK signaling pathways and stress-related proteins, is able to abolish tumor cell growth in nutrient-deprived conditions. Due to the limited solubility of Arctigenin in water, it is suggested that modification of this compound through amino acid esterification can improve its pharmacogenetic properties. Collectively, it is hoped that using Arctigenin or its derivates might introduce new chemotherapeutic approaches in future treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Furanos/farmacologia , Lignanas/farmacologia , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Medicamentos de Ervas Chinesas/uso terapêutico , Furanos/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lignanas/uso terapêutico , Neoplasias/irrigação sanguínea , Neoplasias/genética , Neoplasias/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Nutr Metab (Lond) ; 18(1): 22, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622377

RESUMO

One of the most prevalent diseases worldwide without a fully-known mechanism is non-alcoholic fatty liver disease (NAFLD). Recently, long non-coding RNAs (lncRNAs) have emerged as significant regulatory molecules. These RNAs have been claimed by bioinformatic research that is involved in biologic processes, including cell cycle, transcription factor regulation, fatty acids metabolism, and-so-forth. There is a body of evidence that lncRNAs have a pivotal role in triglyceride, cholesterol, and lipoprotein metabolism. Moreover, lncRNAs by up- or down-regulation of the downstream molecules in fatty acid metabolism may determine the fatty acid deposition in the liver. Therefore, lncRNAs have attracted considerable interest in NAFLD pathology and research. In this review, we provide all of the lncRNAs and their possible mechanisms which have been introduced up to now. It is hoped that this study would provide deep insight into the role of lncRNAs in NAFLD to recognize the better molecular targets for therapy.

9.
Life Sci ; 269: 119083, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33482191

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease that generally affects the joints. In the late stages of the disease, it can be associated with several complications. Although the exact etiology of RA is unknown, various studies have been performed to understand better the immunological mechanisms involved in the pathogenesis of RA. At the onset of the disease, various immune cells migrate to the joints and increase the recruitment of immune cells to the joints by several immunological mediators such as cytokines and chemokines. The function of specific immune cells in RA is well-established. The shift of immune responses to Th1 or Th17 is one of the most essential factors in the development of RA. Myeloid-derived suppressor cells (MDSCs), as a heterogeneous population of myeloid cells, play a regulatory role in the immune system that inhibits T cell activity through several mechanisms. Various studies have been performed on the function of these cells in RA, which in some cases have yielded conflicting results. Therefore, the purpose of this review article is to comprehensively understand the pro-inflammatory and anti-inflammatory functions of MDSCs in the pathogenesis of RA.


Assuntos
Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Células Supressoras Mieloides/imunologia , Células Th1/imunologia , Células Th17/imunologia , Animais , Artrite Reumatoide/metabolismo , Citocinas/metabolismo , Humanos
10.
Adv Exp Med Biol ; 1328: 155-170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34981477

RESUMO

Curcumin, as a vegetative flavonoid, has a protective and therapeutic role in various adverse states such as oxidative stress and inflammation. Remedial properties of this component have been reported in the different chronic diseases including cancers (myeloma, pancreatic, breast, colorectal), vitiligo, psoriasis, neuropathic pains, inflammatory disorders (osteoarthritis, uveitis, ulcerative colitis, Alzheimer), cardiovascular conditions, and diabetes.Cardiovascular disorders include atherosclerosis and various manifestations of atherosclerosis such as stroke, and myocardial infarction (MI) is the leading cause of mortality globally. Studies have shown varying expressions of inflammatory and non-inflammatory chemokines and chemokine receptors in cardiovascular disease, which have been highlighted first in this review. The alteration in chemokines secretion and chemokine receptors has an essential role in the pathophysiology of cardiovascular disease. Chemokines as cytokines with low molecular weight (8-12 kDa) mediate white blood cell (WBC) chemotactic reactions, vascular cell migration, and proliferation that induce endothelial dysfunction, atherogenesis, and cardiac hypertrophy.Several studies reported that curcumin could be advantageous in the attenuation of cardiovascular diseases via anti-inflammatory effects and redress of chemokine secretion and chemokine receptors. We present these studies with a focus on two chemokines: CXCL8 (IL-8) and CCL2 (chemoattractant protein 1 or MCP-1). Future research will further elucidate the precise potential of curcumin on chemokines in the adjustment of cardiovascular system activity or curcumin chemokine-based therapies.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Curcumina , Aterosclerose/tratamento farmacológico , Doenças Cardiovasculares/tratamento farmacológico , Quimiocina CCL2 , Quimiocinas , Curcumina/farmacologia , Curcumina/uso terapêutico , Humanos , Interleucina-8
11.
Prog Biophys Mol Biol ; 161: 17-26, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33259833

RESUMO

Cancer is one of the healthcare problems that affect many communities around the world. Many factors contribute to cancer development. Besides, these factors are counted as the main impediment in cancer immunotherapy. Myeloid-derived suppressor cells (MDSCs) are one of these impediments. MDSCs inhibit the immune responses through various mechanisms such as inhibitory cytokine release and nitric oxide metabolite production. Several factors are involved in forming these cells, including tumor secreted cytokine and chemokines, transcription factors, and non-coding RNA. In the meantime, micro-RNAs (miRNAs) and long non-coding RNAs (lncRNAs) are the vital gene regulatory elements that affect gene expression. In this study, we are going to discuss the role of miRNAs and lncRNAs in MDSCs development in a cancer situation. It is hoped that miRNA and lncRNAs targeting may prevent the growth and development of these inhibitory cells in the cancer environment.


Assuntos
Células Supressoras Mieloides , Neoplasias , Microambiente Tumoral , Humanos , Imunoterapia , MicroRNAs/genética , Neoplasias/genética , Neoplasias/terapia
12.
Curr Pharm Des ; 27(7): 932-941, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33023437

RESUMO

The development of recombinant immunotoxins (RITs) as a novel therapeutic strategy has made a revolution in the treatment of cancer. RITs result from the fusion of antibodies to toxin proteins for targeting and eliminating cancerous cells by inhibiting protein synthesis. Despite indisputable outcomes of RITs regarding inhibition of multiple cancer types, high immunogenicity has been known as the main obstacle in the clinical use of RITs. Various strategies have been proposed to overcome these limitations, including immunosuppressive therapy, humanization of the antibody fragment moiety, generation of immunotoxins originated from endogenous human cytotoxic enzymes, and modification of the toxin moiety to escape the immune system. This paper is devoted to review recent advances in the design of immunotoxins with lower immunogenicity.


Assuntos
Antineoplásicos , Toxinas Bacterianas , Imunotoxinas , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Toxinas Bacterianas/uso terapêutico , Humanos , Imunotoxinas/uso terapêutico , Neoplasias/tratamento farmacológico , Proteínas Recombinantes de Fusão/uso terapêutico
13.
J Res Med Sci ; 25: 111, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33912221

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is the most prevalent autoimmune disease, in which CCL2 and CCL5 are critically involved. The objective was to evaluate the therapeutic effects of bone marrow-derived mesenchymal stem cells (MSCs) on the foregoing chemokines in RA patients. MATERIALS AND METHODS: Thirteen RA patients were evaluated in terms of clinical manifestations, paraclinical factors, gene expression, and plasma levels of CCL2 and CCL5 prior to treatment and 1 and 6 months after intervention. Real-time-polymerase chain reaction and enzyme-linked immunosorbent assay were employed to assess the gene expression and plasma levels of CCL2 and CCL5 at different time points after MSC therapy. Statistical analysis was performed by SPSS 16 and Prism 7. RESULTS: The CCL2 gene expression had statistically significantly increased (P = 0.034), and its plasma level had insignificantly reduced after 1 month. Furthermore, the gene expression and plasma level of CCL5 had statistically significantly decreased (P = 0.032, P < 0.001). The CCL5 gene expression had statistically significantly increased after 6 months (P = 0.001) and its plasma level had insignificantly reduced. CONCLUSION: The most significant inhibitory effects of MSC therapy on the gene expression and plasma level of CCL5 were observed at the end of 1 month. The differences between the gene expression and protein levels during the treatment might be related to microRNA effects or the insufficient number of MSC injection.

14.
J Cell Physiol ; 234(10): 16824-16837, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30784085

RESUMO

Over the course of past few years, cancer immunotherapy has been accompanied with promising results. However, preliminary investigations with respect to immunotherapy concentrated mostly on targeting the immune checkpoints, nowadays, emerge as the most efficient strategy to raise beneficial antitumor immune responses. Programmed cell death protein 1 (PD-1) plays an important role in subsiding immune responses and promoting self-tolerance through suppressing the activity of T cells and promoting differentiation of regulatory T cells. PD-1 is considered as an immune checkpoint and protects against autoimmune responses through both induction of apoptosis in antigen-specific T cells and inhibiting apoptosis in regulatory T cells. Several clinical trials exerting PD-1 monoclonal antibodies as well as other immune-checkpoint blockades have had prosperous outcomes and opened new horizons in tumor immunotherapy. Nonetheless, a bulk of patients have failed to respond to these newly emerging immune-based approach and the survival rate was not satisfying. Additional strategies, especially combination therapies, has been initiated and been further promising. Attempts to identify novel and well-suited predictive biomarkers are also sensed. In this review, the promotion of cancer immunotherapy targeting PD-1 immunoinhibitory pathway is discussed.


Assuntos
Antígeno B7-H1/metabolismo , Neoplasias/terapia , Receptor de Morte Celular Programada 1/metabolismo , Antígeno B7-H1/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoterapia , Receptor de Morte Celular Programada 1/genética
15.
J Cell Physiol ; 234(6): 8055-8074, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30341905

RESUMO

Behçet's disease (BD) is a chronic and rare multisystemic disorder defined by autoimmunity and inflammatory characteristics, manifested by ocular lesions, recurrent genital and oral ulcers, skin symptoms and arthritis as well as neurological, intestinal, and vascular involvement. Despite the unknown cause of BD, there is some strong documentation for immunological, genetic, environmental, and infectious factors playing a role in the pathogenesis of BD. While the nature of the genetic variants remains unidentified, many genetic risk factors are considered to contribute to BD susceptibility. Along with human leukocyte antigen gene encoding B*51 (HLA-B*51) and areas including the major histocompatibility complex class I, genome-wide association studies have recognized numerous other BD susceptibility genes including those encoding interleukin (IL)-10, IL-12 receptor ß 2 (IL-12RB2), IL-23 receptor (IL-23R), C-C chemokine receptor 1 gene, signal transducer and activator of transcription 4 (STAT4), endoplasmic reticulum aminopeptidase (ERAP1), and genes encoding killer cell lectin-like receptor family members (KLRC4-KLRK1). It is believed that BD could be considered as a disorder lying in between autoimmune and autoinflammatory syndromes. The positive responses to classical immunosuppressive agents like azathioprine and cyclosporine and involvement of autoantigens in the initiation of the disorder are the main BD features that reflect the autoimmune nature of the disorder. In this review, we address recent findings on the role of common cytokines, antibodies and immunogenetic factors in BD.


Assuntos
Autoimunidade/genética , Síndrome de Behçet/genética , Síndrome de Behçet/imunologia , Predisposição Genética para Doença , Aminopeptidases/genética , Aminopeptidases/imunologia , Autoimunidade/imunologia , Síndrome de Behçet/patologia , Estudo de Associação Genômica Ampla , Antígeno HLA-B51/genética , Antígeno HLA-B51/imunologia , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Receptores de Interleucina-12/genética , Receptores de Interleucina-12/imunologia , Fatores de Risco
16.
J Cell Physiol ; 234(7): 9927-9942, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30536403

RESUMO

Prostate cancer (PCa) is considered the most prevalent malignancy and the second major cause of cancer-related death in males from Western countries. PCa exhibits variable clinical pictures, ranging from dormant to highly metastatic cancer. PCa suffers from poor prognosis and diagnosis markers, and novel biomarkers are required to define disease stages and to design appropriate therapeutic approach by considering the possible genomic and epigenomic differences. MicroRNAs (miRNAs) comprise a class of small noncoding RNAs, which have remarkable functions in cell formation, differentiation, and cancer development and contribute in these processes through controlling the expressions of protein-coding genes by repressing translation or breaking down the messenger RNA in a sequence-specific method. miRNAs in cancer are able to reflect informative data about the current status of disease and this might benefit PCa prognosis and diagnosis since that is concerned to PCa patients and we intend to highlight it in this paper.


Assuntos
Biomarcadores Tumorais/metabolismo , Movimento Celular , MicroRNAs/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Biomarcadores Tumorais/genética , Diagnóstico Diferencial , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Técnicas de Diagnóstico Molecular , Invasividade Neoplásica , Metástase Neoplásica , Valor Preditivo dos Testes , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Transdução de Sinais
17.
Autoimmun Rev ; 16(12): 1209-1218, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29037907

RESUMO

Interleukin-22 (IL22) is one of the members of IL10 family. Elevated levels of this cytokine can be seen in diseases caused by T lymphocytes, such as Psoriasis, Rheumatoid arthritis, interstitial lung diseases. IL22 is produced by different cells in both innate and acquired immunities. Different types of T cells are able to produce IL22, but the major IL22-producing T-cell is the TCD4. TH22 cell is a new line of TCD4 cells, which differentiated from naive T cells in the presence of TNFα and IL6; 50% of peripheral blood IL22 is produced by these cells. IL22 has important functions in host defense at mucosal surfaces as well as in tissue repair. In this review, we assess the current understanding of this cytokine and focus on the possible roles of IL-22 in autoimmune diseases.


Assuntos
Inflamação/imunologia , Interleucinas/imunologia , Viroses/imunologia , Animais , Humanos , Interleucina 22
18.
Postepy Dermatol Alergol ; 31(4): 256-61, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25254011

RESUMO

Human Th17 pro-inflammatory cells are currently defined as cells that produce IL-17A and F, tumor necrosis factor (TNF)-α, IL-6, IL-21, IL-22 and IL-23. Recently discovered related molecules are forming a family of cytokines, the IL-17 family, IL-17A, IL-17B, IL-17C, IL-17D, IL-17E and IL-17F. The associated receptors for the IL-17 family identified are IL-17R, IL-17RH1, IL-17RL (receptor like), IL-17RD and IL-17RE. This review introduces the roles of IL-17 and Th17 cells in human autoimmune diseases. Studies have shown that T cells with inflammatory effects on epithelial, endothelial and fibroblast cells express IL-17. Th17 cells are supposed to be involved in various autoimmune diseases, such as rheumatoid arthritis, psoriasis, multiple sclerosis, and inflammatory bowel diseases. Base on the biologic functions and regulation, IL-17 has regulatory roles in host defense and chronic inflammation which result in tissue damage and autoimmunity. So the IL-17 links links innate and adaptive immunity and has both beneficial and pathological effects on the immune system. This paper will focus on the possible roles of IL-17 in autoimmune diseases, a fundamental player in immune regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...