Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Life Sci Alliance ; 7(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38955468

RESUMO

In addition to mitochondrial DNA, mitochondrial double-stranded RNA (mtdsRNA) is exported from mitochondria. However, specific channels for RNA transport have not been demonstrated. Here, we begin to characterize channel candidates for mtdsRNA export from the mitochondrial matrix to the cytosol. Down-regulation of SUV3 resulted in the accumulation of mtdsRNAs in the matrix, whereas down-regulation of PNPase resulted in the export of mtdsRNAs to the cytosol. Targeting experiments show that PNPase functions in both the intermembrane space and matrix. Strand-specific sequencing of the double-stranded RNA confirms the mitochondrial origin. Inhibiting or down-regulating outer membrane proteins VDAC1/2 and BAK/BAX or inner membrane proteins PHB1/2 strongly attenuated the export of mtdsRNAs to the cytosol. The cytosolic mtdsRNAs subsequently localized to large granules containing the stress protein TIA-1 and activated the type 1 interferon stress response pathway. Abundant mtdsRNAs were detected in a subset of non-small-cell lung cancer cell lines that were glycolytic, indicating relevance in cancer biology. Thus, we propose that mtdsRNA is a new damage-associated molecular pattern that is exported from mitochondria in a regulated manner.


Assuntos
Citosol , Mitocôndrias , Proibitinas , RNA de Cadeia Dupla , RNA Mitocondrial , Humanos , Citosol/metabolismo , Mitocôndrias/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA Mitocondrial/metabolismo , RNA Mitocondrial/genética , Linhagem Celular Tumoral , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Transporte de RNA , Exorribonucleases/metabolismo , Exorribonucleases/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas Mitocondriais
3.
Cancer Res Commun ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949950

RESUMO

Myristoylation is a type of protein acylation by which the fatty acid myristate is added to the N-terminus of target proteins, a process mediated by N-myristoyltransferases. Myristoylation is emerging as a promising cancer therapeutic target, however the molecular determinants of sensitivity to N-myristoyltransferase inhibition or the mechanism by which it induces cancer cell death are not completely understood. We report that N-myristoyltransferases are a novel therapeutic target in lung carcinoma cells with LKB1 and/or KEAP1 mutations in a KRAS mutant background. Inhibition of myristoylation decreases cell viability in vitro and tumor growth in vivo. Inhibition of myristoylation causes mitochondrial ferrous iron overload, oxidative stress, elevated protein poly (ADP)-ribosylation and death by parthanatos. Furthermore, NMT inhibitors sensitized lung carcinoma cells to platinum-based chemotherapy. Unexpectedly, the mitochondrial transporter Translocase of Inner Mitochondrial Membrane 17 homologue A (TIM17A) is a critical target of myristoylation inhibitors in these cells. TIM17A silencing recapitulated the effects of NMT inhibition at inducing mitochondrial ferrous iron overload and parthanatos. Furthermore, sensitivity of lung carcinoma cells to myristoylation inhibition correlated with their dependency on TIM17A. This study reveals the unexpected connection between protein myristoylation, the mitochondrial import machinery, and iron homeostasis. It also uncovers myristoylation inhibitors as novel inducers of parthanatos in cancer, and the novel axis N-myristoyltransferase-TIM17A as a potential therapeutic target in highly aggressive lung carcinomas.

5.
Nature ; 615(7953): 712-719, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922590

RESUMO

Mitochondria are critical to the governance of metabolism and bioenergetics in cancer cells1. The mitochondria form highly organized networks, in which their outer and inner membrane structures define their bioenergetic capacity2,3. However, in vivo studies delineating the relationship between the structural organization of mitochondrial networks and their bioenergetic activity have been limited. Here we present an in vivo structural and functional analysis of mitochondrial networks and bioenergetic phenotypes in non-small cell lung cancer (NSCLC) using an integrated platform consisting of positron emission tomography imaging, respirometry and three-dimensional scanning block-face electron microscopy. The diverse bioenergetic phenotypes and metabolic dependencies we identified in NSCLC tumours align with distinct structural organization of mitochondrial networks present. Further, we discovered that mitochondrial networks are organized into distinct compartments within tumour cells. In tumours with high rates of oxidative phosphorylation (OXPHOSHI) and fatty acid oxidation, we identified peri-droplet mitochondrial networks wherein mitochondria contact and surround lipid droplets. By contrast, we discovered that in tumours with low rates of OXPHOS (OXPHOSLO), high glucose flux regulated perinuclear localization of mitochondria, structural remodelling of cristae and mitochondrial respiratory capacity. Our findings suggest that in NSCLC, mitochondrial networks are compartmentalized into distinct subpopulations that govern the bioenergetic capacity of tumours.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Metabolismo Energético , Neoplasias Pulmonares , Mitocôndrias , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/ultraestrutura , Ácidos Graxos/metabolismo , Glucose/metabolismo , Gotículas Lipídicas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/ultraestrutura , Microscopia Eletrônica , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Fosforilação Oxidativa , Fenótipo , Tomografia por Emissão de Pósitrons
6.
Sci Rep ; 12(1): 3592, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246558

RESUMO

Head and neck cancer is the sixth most common cancer in the world, with more than 300,000 deaths attributed to the disease annually. Aggressive surgical resection often with adjuvant chemoradiation is the cornerstone of treatment. However, the necessary chemoradiation treatment can result in collateral damage to adjacent vital structures causing a profound impact on quality of life. Here, we present a novel polymer of poly(lactic-co-glycolic) acid and polyvinyl alcohol that can serve as a versatile multidrug delivery platform as well as for detection on cross-sectional imaging while functioning as a fiduciary marker for postoperative radiotherapy and radiotherapeutic dosing. In a mouse xenograft model, the dual-layered polymer composed of calcium carbonate/thymoquinone was used for both polymer localization and narrow-field infusion of a natural therapeutic compound. A similar approach can be applied in the treatment of head and neck cancer patients, where immunotherapy and traditional chemotherapy can be delivered simultaneously with independent release kinetics.


Assuntos
Neoplasias de Cabeça e Pescoço , Polímeros , Animais , Quimiorradioterapia Adjuvante , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Camundongos , Polímeros/química , Qualidade de Vida
7.
Nat Commun ; 13(1): 1090, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35228570

RESUMO

LKB1 is among the most frequently altered tumor suppressors in lung adenocarcinoma. Inactivation of Lkb1 accelerates the growth and progression of oncogenic KRAS-driven lung tumors in mouse models. However, the molecular mechanisms by which LKB1 constrains lung tumorigenesis and whether the cancer state that stems from Lkb1 deficiency can be reverted remains unknown. To identify the processes governed by LKB1 in vivo, we generated an allele which enables Lkb1 inactivation at tumor initiation and subsequent Lkb1 restoration in established tumors. Restoration of Lkb1 in oncogenic KRAS-driven lung tumors suppressed proliferation and led to tumor stasis. Lkb1 restoration activated targets of C/EBP transcription factors and drove neoplastic cells from a progenitor-like state to a less proliferative alveolar type II cell-like state. We show that C/EBP transcription factors govern a subset of genes that are induced by LKB1 and depend upon NKX2-1. We also demonstrate that a defining factor of the alveolar type II lineage, C/EBPα, constrains oncogenic KRAS-driven lung tumor growth in vivo. Thus, this key tumor suppressor regulates lineage-specific transcription factors, thereby constraining lung tumor development through enforced differentiation.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição/genética
9.
Cell Chem Biol ; 29(3): 423-435.e10, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-34715056

RESUMO

Efforts to target glucose metabolism in cancer have been limited by the poor potency and specificity of existing anti-glycolytic agents and a poor understanding of the glucose dependence of cancer subtypes in vivo. Here, we present an extensively characterized series of potent, orally bioavailable inhibitors of the class I glucose transporters (GLUTs). The representative compound KL-11743 specifically blocks glucose metabolism, triggering an acute collapse in NADH pools and a striking accumulation of aspartate, indicating a dramatic shift toward oxidative phosphorylation in the mitochondria. Disrupting mitochondrial metabolism via chemical inhibition of electron transport, deletion of the malate-aspartate shuttle component GOT1, or endogenous mutations in tricarboxylic acid cycle enzymes, causes synthetic lethality with KL-11743. Patient-derived xenograft models of succinate dehydrogenase A (SDHA)-deficient cancers are specifically sensitive to KL-11743, providing direct evidence that TCA cycle-mutant tumors are vulnerable to GLUT inhibitors in vivo.


Assuntos
Ciclo do Ácido Cítrico , Neoplasias , Ácido Aspártico/metabolismo , Glucose/metabolismo , Humanos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-34127512

RESUMO

Lung cancer is a heterogeneous disease that is subdivided into histopathological subtypes with distinct behaviors. Each subtype is characterized by distinct features and molecular alterations that influence tumor metabolism. Alterations in tumor metabolism can be exploited by imaging modalities that use metabolite tracers for the detection and characterization of tumors. Microenvironmental factors, including nutrient and oxygen availability and the presence of stromal cells, are a critical influence on tumor metabolism. Recent technological advances facilitate the direct evaluation of metabolic alterations in patient tumors in this complex microenvironment. In addition, molecular alterations directly influence tumor cell metabolism and metabolic dependencies that influence response to therapy. Current therapeutic approaches to target tumor metabolism are currently being developed and translated into the clinic for patient therapy.


Assuntos
Adaptação Fisiológica/genética , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/metabolismo , Fenótipo , Microambiente Tumoral , Aminoácidos/análise , Glicemia/análise , Genes erbB-1/genética , Genes p53/genética , Humanos , Terapia de Alvo Molecular , Nucleotídeos/metabolismo , Tomografia por Emissão de Pósitrons , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Tomografia Computadorizada por Raios X
11.
ACS Nano ; 15(5): 8559-8573, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33969999

RESUMO

Brain extracellular matrix (ECM) structure mediates many aspects of neural development and function. Probing structural changes in brain ECM could thus provide insights into mechanisms of neurodevelopment, the loss of neural function in response to injury, and the detrimental effects of pathological aging and neurological disease. We demonstrate the ability to probe changes in brain ECM microstructure using multiple particle tracking (MPT). We performed MPT of colloidally stable polystyrene nanoparticles in organotypic rat brain slices collected from rats aged 14-70 days old. Our analysis revealed an inverse relationship between nanoparticle diffusive ability in the brain extracellular space and age. Additionally, the distribution of effective ECM pore sizes in the cortex shifted to smaller pores throughout development. We used the raw data and features extracted from nanoparticle trajectories to train a boosted decision tree capable of predicting chronological age with high accuracy. Collectively, this work demonstrates the utility of combining MPT with machine learning for measuring changes in brain ECM structure and predicting associated complex features such as chronological age. This will enable further understanding of the roles brain ECM play in development and aging and the specific mechanisms through which injuries cause aberrant neuronal function. Additionally, this approach has the potential to develop machine learning models capable of detecting the presence of injury or indicating the extent of injury based on changes in the brain microenvironment microstructure.


Assuntos
Encéfalo , Matriz Extracelular , Envelhecimento , Animais , Neurogênese , Neurônios , Ratos
12.
Cancer Res ; 81(12): 3295-3308, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33853830

RESUMO

LKB1 inactivating mutations are commonly observed in patients with KRAS-mutant non-small cell lung cancer (NSCLC). Although treatment of NSCLC with immune checkpoint inhibitors (ICI) has resulted in improved overall survival in a subset of patients, studies have revealed that co-occurring KRAS/LKB1 mutations drive primary resistance to ICIs in NSCLC. Effective therapeutic options that overcome ICI resistance in LKB1-mutant NSCLC are limited. Here, we report that loss of LKB1 results in increased secretion of the C-X-C motif (CXC) chemokines with an NH2-terminal Glu-Leu-Arg (ELR) motif in premalignant and cancerous cells, as well as in genetically engineered murine models (GEMM) of NSCLC. Heightened levels of ELR+ CXC chemokines in LKB1-deficient murine models of NSCLC positively correlated with increased abundance of granulocytic myeloid-derived suppressor cells (G-MDSC) locally within the tumor microenvironment and systemically in peripheral blood and spleen. Depletion of G-MDSCs with antibody or functional inhibition via all-trans-retinoic acid (ATRA) led to enhanced antitumor T-cell responses and sensitized LKB1-deficent murine tumors to PD-1 blockade. Combination therapy with anti-PD-1 and ATRA improved local and systemic T-cell proliferation and generated tumor-specific immunity. Our findings implicate ELR+ CXC chemokine-mediated enrichment of G-MDSCs as a potential mediator of immunosuppression in LKB1-deficient NSCLC and provide a rationale for using ATRA in combination with anti-PD-1 therapy in patients with LKB1-deficient NSCLC refractory to ICIs. SIGNIFICANCE: These findings show that accumulation of myeloid-derived suppressor cells in LKB1-deficient non-small cell lung cancer can be overcome via treatment with all-trans-retinoic acid, sensitizing tumors to immunotherapy.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP/deficiência , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Granulócitos/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Células Supressoras Mieloides/imunologia , Animais , Apoptose , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Nat Commun ; 12(1): 1876, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767183

RESUMO

Viruses hijack host cell metabolism to acquire the building blocks required for replication. Understanding how SARS-CoV-2 alters host cell metabolism may lead to potential treatments for COVID-19. Here we profile metabolic changes conferred by SARS-CoV-2 infection in kidney epithelial cells and lung air-liquid interface (ALI) cultures, and show that SARS-CoV-2 infection increases glucose carbon entry into the TCA cycle via increased pyruvate carboxylase expression. SARS-CoV-2 also reduces oxidative glutamine metabolism while maintaining reductive carboxylation. Consistent with these changes, SARS-CoV-2 infection increases the activity of mTORC1 in cell lines and lung ALI cultures. Lastly, we show evidence of mTORC1 activation in COVID-19 patient lung tissue, and that mTORC1 inhibitors reduce viral replication in kidney epithelial cells and lung ALI cultures. Our results suggest that targeting mTORC1 may be a feasible treatment strategy for COVID-19 patients, although further studies are required to determine the mechanism of inhibition and potential efficacy in patients.


Assuntos
COVID-19/patologia , Ciclo do Ácido Cítrico/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Animais , Benzamidas/farmacologia , Linhagem Celular , Chlorocebus aethiops , Glucose/metabolismo , Glutamina/metabolismo , Células HEK293 , Humanos , Pulmão/metabolismo , Pulmão/virologia , Morfolinas/farmacologia , Naftiridinas/farmacologia , Pirimidinas/farmacologia , Piruvato Carboxilase/biossíntese , SARS-CoV-2/metabolismo , Células Vero , Replicação Viral/efeitos dos fármacos
14.
Cell Metab ; 33(5): 1013-1026.e6, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33609439

RESUMO

Mitochondrial respiration is critical for cell proliferation. In addition to producing ATP, respiration generates biosynthetic precursors, such as aspartate, an essential substrate for nucleotide synthesis. Here, we show that in addition to depleting intracellular aspartate, electron transport chain (ETC) inhibition depletes aspartate-derived asparagine, increases ATF4 levels, and impairs mTOR complex I (mTORC1) activity. Exogenous asparagine restores proliferation, ATF4 and mTORC1 activities, and mTORC1-dependent nucleotide synthesis in the context of ETC inhibition, suggesting that asparagine communicates active respiration to ATF4 and mTORC1. Finally, we show that combination of the ETC inhibitor metformin, which limits tumor asparagine synthesis, and either asparaginase or dietary asparagine restriction, which limit tumor asparagine consumption, effectively impairs tumor growth in multiple mouse models of cancer. Because environmental asparagine is sufficient to restore tumor growth in the context of respiration impairment, our findings suggest that asparagine synthesis is a fundamental purpose of tumor mitochondrial respiration, which can be harnessed for therapeutic benefit to cancer patients.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Asparagina/metabolismo , Mitocôndrias/metabolismo , Animais , Asparagina/farmacologia , Ácido Aspártico/deficiência , Ácido Aspártico/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dieta/veterinária , Complexo de Proteínas da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Camundongos Endogâmicos NOD , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/mortalidade , Neoplasias/patologia , Nucleotídeos/metabolismo , Taxa de Sobrevida
15.
Cancer Immunol Immunother ; 70(8): 2389-2400, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33507343

RESUMO

Conditional genetically engineered mouse models (GEMMs) of non-small cell lung cancer (NSCLC) harbor common oncogenic driver mutations of the disease, but in contrast to human NSCLC these models possess low tumor mutational burden (TMB). As a result, these models often lack tumor antigens that can elicit host adaptive immune responses, which limits their utility in immunotherapy studies. Here, we establish Kras-mutant murine models of NSCLC bearing the common driver mutations associated with the disease and increased TMB, by in vitro exposure of cell lines derived from GEMMs of NSCLC [KrasG12D (K), KrasG12DTp53-/-(KP), KrasG12DTp53+/-Lkb1-/- (KPL)] to the alkylating agent N-methyl-N-nitrosourea (MNU). Increasing the TMB enhanced host anti-tumor T cell responses and improved anti-PD-1 efficacy in syngeneic models across all genetic backgrounds. However, limited anti-PD-1 efficacy was observed in the KPL cell lines with increased TMB, which possessed a distinct immunosuppressed tumor microenvironment (TME) primarily composed of granulocytic myeloid-derived suppressor cells (G-MDSCs). This KPL phenotype is consistent with findings in human KRAS-mutant NSCLC where LKB1 loss is a driver of primary resistance to PD-1 blockade. In summary, these novel Kras-mutant NSCLC murine models with known driver mutations and increased TMB have distinct TMEs and recapitulate the therapeutic vulnerabilities of human NSCLC. We anticipate that these immunogenic models will facilitate the development of innovative immunotherapies in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Mutação/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Antígeno B7-H1/genética , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Camundongos , Proteínas Serina-Treonina Quinases/genética , Microambiente Tumoral/genética , Proteína Supressora de Tumor p53/genética
16.
Cancer Discov ; 11(3): 714-735, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33318037

RESUMO

MAPK targeting in cancer often fails due to MAPK reactivation. MEK inhibitor (MEKi) monotherapy provides limited clinical benefits but may serve as a foundation for combination therapies. Here, we showed that combining a type II RAF inhibitor (RAFi) with an allosteric MEKi durably prevents and overcomes acquired resistance among cancers with KRAS, NRAS, NF1, BRAF non-V600, and BRAF V600 mutations. Tumor cell-intrinsically, type II RAFi plus MEKi sequester MEK in RAF complexes, reduce MEK/MEK dimerization, and uncouple MEK from ERK in acquired-resistant tumor subpopulations. Immunologically, this combination expands memory and activated/exhausted CD8+ T cells, and durable tumor regression elicited by this combination requires CD8+ T cells, which can be reinvigorated by anti-PD-L1 therapy. Whereas MEKi reduces dominant intratumoral T-cell clones, type II RAFi cotreatment reverses this effect and promotes T-cell clonotypic expansion. These findings rationalize the clinical development of type II RAFi plus MEKi and their further combination with PD-1/L1-targeted therapy. SIGNIFICANCE: Type I RAFi + MEKi are indicated only in certain BRAF V600MUT cancers. In contrast, type II RAFi + MEKi are durably active against acquired MEKi resistance across broad cancer indications, which reveals exquisite MAPK addiction. Allosteric modulation of MAPK protein/protein interactions and temporal preservation of intratumoral CD8+ T cells are mechanisms that may be further exploited.This article is highlighted in the In This Issue feature, p. 521.


Assuntos
Resistencia a Medicamentos Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Imunidade Celular/efeitos dos fármacos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica , Estabilidade Proteica , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Clin Lung Cancer ; 22(1): 67-70, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33229301

RESUMO

INTRODUCTION: There are currently no approved targeted therapies for lung squamous-cell carcinoma (LSCC) and KRAS-mutant lung adenocarcinoma (LUAD). About 30% of LSCC and 25% of KRAS-mutant LUAD exhibit hyperactive NRF2 pathway activation through mutations in NFE2L2 (the gene encoding NRF2) or its negative regulator, KEAP1. Preclinical data demonstrate that these tumors are uniquely sensitive to dual inhibition of glycolysis and glutaminolysis via mammalian target of rapamycin (mTOR) and glutaminase inhibitors. This phase 1 study was designed to assess safety and preliminary activity of the mTOR inhibitor MLN0128 (sapanisertib) in combination with the glutaminase inhibitor CB-839 HCl. METHODS: Phase 1 dose finding will use the queue-based variation of the 3 + 3 dose escalation scheme with the primary endpoint of identifying the recommended expansion dose. To confirm the acceptable tolerability of the recommended expansion dose, patients will subsequently enroll onto 1 of 4 expansion cohorts (n = 14 per cohort): (1) LSCC harboring NFE2L2 or (2) KEAP1 mutations, or (3) LUAD harboring KRAS/(KEAP1 or NFE2L2) coalterations, or (4) LSCC wild type for NFE2L2 and KEAP1. The primary endpoint of the dose expansion is to determine the preliminary efficacy of MLN0128/CB-839 combination therapy. CONCLUSION: This phase 1 study will determine the recommended expansion dose and preliminary efficacy of MLN0128 and CB-839 in advanced non-small-cell lung cancer with a focus on subsets of LSCC and KRAS-mutant LUAD harboring NFE2L2 or KEAP1 mutations.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ensaios Clínicos Fase I como Assunto/métodos , Neoplasias Pulmonares/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Benzenoacetamidas/administração & dosagem , Benzoxazóis/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/patologia , Prognóstico , Pirimidinas/administração & dosagem , Tiadiazóis/administração & dosagem
19.
Life Sci Alliance ; 3(7)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32499316

RESUMO

Recent breakthroughs in live-cell imaging have enabled visualization of cristae, making it feasible to investigate the structure-function relationship of cristae in real time. However, quantifying live-cell images of cristae in an unbiased way remains challenging. Here, we present a novel, semi-automated approach to quantify cristae, using the machine-learning Trainable Weka Segmentation tool. Compared with standard techniques, our approach not only avoids the bias associated with manual thresholding but more efficiently segments cristae from Airyscan and structured illumination microscopy images. Using a cardiolipin-deficient cell line, as well as FCCP, we show that our approach is sufficiently sensitive to detect perturbations in cristae density, size, and shape. This approach, moreover, reveals that cristae are not uniformly distributed within the mitochondrion, and sites of mitochondrial fission are localized to areas of decreased cristae density. After a fusion event, individual cristae from the two mitochondria, at the site of fusion, merge into one object with distinct architectural values. Overall, our study shows that machine learning represents a compelling new strategy for quantifying cristae in living cells.


Assuntos
Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial , Linhagem Celular , Humanos , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência/métodos , Membranas Mitocondriais/fisiologia , Membranas Mitocondriais/ultraestrutura , Imagem Óptica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...