Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
BMC Infect Dis ; 23(1): 572, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660078

RESUMO

BACKGROUND: Cholera in Kolkata remains endemic and the Indian city is burdened with a high number of annual cases. Climate change is widely considered to exacerbate cholera, however the precise relationship between climate and cholera is highly heterogeneous in space and considerable variation can be observed even within the Indian subcontinent. To date, relatively few studies have been conducted regarding the influence of climate on cholera in Kolkata. METHODS: We considered 21 years of confirmed cholera cases from the Infectious Disease Hospital in Kolkata during the period of 1999-2019. We used Generalised Additive Modelling (GAM) to extract the non-linear relationship between cholera and different climatic factors; temperature, rainfall and sea surface temperature (SST). Peak associated lag times were identified using cross-correlation lag analysis. RESULTS: Our findings revealed a bi-annual pattern of cholera cases with two peaks coinciding with the increase in temperature in summer and the onset of monsoon rains. Variables selected as explanatory variables in the GAM model were temperature and rainfall. Temperature was the only significant factor associated with summer cholera (mean temperature of 30.3 °C associated with RR of 3.8) while rainfall was found to be the main driver of monsoon cholera (550 mm total monthly rainfall associated with RR of 3.38). Lag time analysis revealed that the association between temperature and cholera cases in the summer had a longer peak lag time compared to that between rainfall and cholera during the monsoon. We propose several mechanisms by which these relationships are mediated. CONCLUSIONS: Kolkata exhibits a dual-peak phenomenon with independent mediating factors. We suggest that the summer peak is due to increased bacterial concentration in urban water bodies, while the monsoon peak is driven by contaminated flood waters. Our results underscore the potential utility of preventative strategies tailored to these seasonal and climatic patterns, including efforts to reduce direct contact with urban water bodies in summer and to protect residents from flood waters during monsoon.


Assuntos
Cólera , Humanos , Povo Asiático , Cólera/epidemiologia , Mudança Climática , Inundações , Água , Estações do Ano , Clima , Índia/epidemiologia
2.
Gut Pathog ; 15(1): 42, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704999

RESUMO

BACKGROUND: In the Bengal Delta, research has shown that climate and cholera are linked. One demonstration of this is the relationship between interannual ocean-atmospheric oscillations such as the El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). What remains unclear in the present literature is the nature of this relationship in the specific context of Kolkata, and how this relationship may have changed over time. RESULTS: In this study, we analyse the changing relationship between ENSO and IOD with cholera in Kolkata over recent (1999-2019) and historical (1897-1941) time intervals. Wavelet coherence analysis revealed significant non-stationary association at 2-4 year and 4-8 year periods between cholera and both interannual timeseries during both time intervals. However, coherence was notably weakened in the recent interval, particularly with regards to ENSO, a result supported by a complementary SARIMA analysis. Similar coherence patterns with temperature indicate it could be an important mediating factor in the relationship between cholera and oscillating climate phenomena in Kolkata. CONCLUSIONS: This study reveals a shifting relationship between cholera and climate variables (ENSO and IOD) in Kolkata, suggesting a decoupling between environmental influences and cholera transmission in recent years. Our results therefore do not suggest that an intensification of ENSO is likely to significantly influence cholera in the region. We also find that the relationship between cholera and interannual climate variables is distinct to Kolkata, highlighting the spatial heterogeneity of the climate-cholera relationship even within the Bengal Delta.

3.
Rev Environ Health ; 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36639850

RESUMO

OBJECTIVES: Cholera has a long history in India and Bangladesh, the region where six out of the past seven global pandemics have been seeded. The changing climate and growing population have led to global cholera cases remaining high despite a consistent improvement in the access to clean water and sanitation. We aim to provide a holistic overview of variables influencing environmental cholera transmission within the context of India and Bangladesh, with a focus on the mechanisms by which they act. CONTENT: We identified 56 relevant texts (Bangladesh n = 40, India n = 7, Other n = 5). The results of the review found that cholera transmission is associated with several socio-economic and environmental factors, each associated variable is suggested to have at least one mediating mechanism. Increases in ambient temperature and coastal sea surface temperature support cholera transmission via increases in plankton and a preference of Vibrio cholerae for warmer waters. Increased rainfall can potentially support or reduce transmission via several mechanisms. SUMMARY AND OUTLOOK: Common issues in the literature are co-variance of seasonal factors, limited access to high quality cholera data, high research bias towards research in Dhaka and Matlab (Bangladesh). A specific and detailed understanding of the relationship between SST and cholera incidence remains unclear.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...