Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 199: 139-149, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35430316

RESUMO

DNA-dependent protein kinase (DNA-PK) is a key player in the NHEJ repair pathway. DNA-PK and its subunits, Ku70, Ku80, and catalytic subunit (DNA-PKcs), also participate in other cellular processes; however, there are still no systemic data on the effect of depletion of Ku70, Ku80 and DNA-PKcs on cell functions in the same cell line. Here, we analyzed transcriptome changes in HEK 293T cells after depletion of each DNA-PK subunit. Depletion of various DNA-PK subunits resulted in dramatic differences in the number of differentially expressed genes: only 7 genes changed more than 2-fold in DNA-PKcs-deficient cells, 29 genes in Ku80-deficient, 219 genes in Ku70-deficient. All DNA-PKcs-dependent genes were stress-related and depended on both Ku70 and Ku80. Two-thirds of Ku80-dependent genes were also differentially expressed in the Ku70-deficient line. Most Ku70-dependent genes were altered exclusively in Ku70-depleted cells, indicating that Ku70 is involved in the regulation of more processes than Ku80. GO enrichment analysis showed the effect of Ku70 knockdown on cell adhesion and matrix organization, protein degradation, cell proliferation, and differentiation. Depletion of Ku70, but not Ku80, provided greater cell motility and disassembly of cell-cell contacts. These data clearly indicate that Ku70 is more functionally important for the cell life than DNA-PKcs and even Ku80.


Assuntos
Antígenos Nucleares , Proteína Quinase Ativada por DNA , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , DNA/metabolismo , Reparo do DNA , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Proteínas Nucleares/metabolismo
2.
Data Brief ; 39: 107596, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34849385

RESUMO

DNA-PK is a heterotrimeric complex that consists of Ku70 (XRCC6), Ku80 (XRCC5) and DNA-PKcs (PRKDC) subunits. The complex is a major player in the repair of DNA double strand break (DSB) via the non-homologous end joining (NHEJ) pathway. This process requires all DNA-PK subunits, since Ku70/Ku80 heterodimer firstly binds to DNA ends at DSB and then recruits DNA-PKcs. Recruitment of the DNA-PKcs subunit to DSB leads to phosphorylation events near DSB and recruitment of other NHEJ-related proteins that restore DNA integrity. However, today a lot of evidence demonstrates participation of the DNA-PK components in other cellular processes, e.g. telomere length maintenance, transcription, metabolism regulation, cytosolic DNA sensing, apoptosis, cellular movement and adhesion. It is important to note that not all the subunits of the DNA-PK complex are necessary for these processes, and the largest number of independent functions has been shown for the Ku70/Ku80 heterodimer and especially the Ku70 subunit. To better understand the role of each DNA-PK subunit in the cell life, we have analyzed transcriptome changes in HEK293T cells depleted of Ku70, Ku80 or DNA-PKcs using NGS-sequencing. Here, for the first time, we present the data obtained from the transcriptome analysis.

3.
Cells ; 9(8)2020 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824372

RESUMO

The DNA dependent protein kinase (DNA-PK) is a trimeric nuclear complex consisting of a large protein kinase and the Ku heterodimer. The kinase activity of DNA-PK is required for efficient repair of DNA double-strand breaks (DSB) by non-homologous end joining (NHEJ). We also showed that the kinase activity of DNA-PK is essential for post-integrational DNA repair in the case of HIV-1 infection. Besides, DNA-PK is known to participate in such cellular processes as protection of mammalian telomeres, transcription, and some others where the need for its phosphorylating activity is not clearly elucidated. We carried out a systematic search and analysis of DNA-PK targets described in the literature and identified 67 unique DNA-PK targets phosphorylated in response to various in vitro and/or in vivo stimuli. A functional enrichment analysis of DNA-PK targets and determination of protein-protein associations among them were performed. For 27 proteins from these 67 DNA-PK targets, their participation in the HIV-1 life cycle was demonstrated. This information may be useful for studying the functioning of DNA-PK in various cellular processes, as well as in various stages of HIV-1 replication.


Assuntos
Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Infecções por HIV/enzimologia , Infecções por HIV/genética , HIV-1/genética , HIV-1/metabolismo , Replicação Viral , Animais , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , DNA Viral/genética , DNA Viral/metabolismo , Proteínas de Ligação a DNA/metabolismo , Infecções por HIV/virologia , Humanos , Autoantígeno Ku/metabolismo , Fosforilação
4.
Biochimie ; 171-172: 110-123, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32105815

RESUMO

Human Ku heterodimeric protein composed of Ku70 and Ku80 subunits plays an important role in the non-homologous end-joining DNA repair pathway as a sensor of double strand DNA breaks. Ku is also involved in numerous cellular processes, and in some of them it acts in an RNA-dependent manner. However, RNA binding properties of the human Ku have not been well studied. Here we have analyzed interactions of a recombinant Ku heterodimer with a set of RNAs of various structure as well as eCLIP (enhanced crosslinking and immunoprecipitation) data for human Ku70. As a result, we have proposed a consensus RNA structure preferable for the Ku binding that is a hairpin possessing a bulge just near GpG sequence-containing terminal loop. 7SK snRNA is a scaffold for a ribonucleoprotein complex (7SK snRNP), which is known to participate in transcription regulation. We have shown that the recombinant Ku specifically binds a G-rich loop of hairpin 1 within 7SK snRNA. Moreover, Ku protein has been co-precipitated from HEK 293T cells with endogenous 7SK snRNA and such proteins included in 7SK snRNP as HEXIM1, Cdk9 and CTIP2. Ku and Cdk9 binding is found to be RNA-independent, meanwhile HEXIM1 and Ku co-precipitation depended on the presence of intact 7SK snRNA. The latter result has been confirmed using recombinant HEXIM1 and Ku proteins. Colocalization of Ku and CTIP2 was additionally confirmed by confocal microscopy. These results allow us to propose human Ku as a new component of the 7SK snRNP complex.


Assuntos
Autoantígeno Ku/metabolismo , RNA Longo não Codificante/metabolismo , Sítios de Ligação , Quinase 9 Dependente de Ciclina/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
5.
Retrovirology ; 16(1): 30, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31690330

RESUMO

BACKGROUND: HIV-1 integration results in genomic DNA gaps that are repaired by cellular DNA repair pathways. This step of the lentiviral life cycle remains poorly understood despite its crucial importance for successful replication. We and others reported that Ku70 protein of the non-homologous end joining pathway (NHEJ) directly binds HIV-1 integrase (IN). Here, we studied the importance of this interaction for post-integrational gap repair and the recruitment of NHEJ factors in this process. RESULTS: We engineered HIV-based pseudovirus with mutant IN defective in Ku70 binding and generated heterozygous Ku70, Ku80 and DNA-PKcs human knockout (KO) cells using CRISPR/Cas9. KO of either of these proteins or inhibition of DNA-PKcs catalytic activity substantially decreased the infectivity of HIV-1 with native IN but not with the mutant one. We used a recently developed qPCR assay for the measurement of gap repair efficiency to show that HIV-1 with mutant IN was defective in DNA post-integrational repair, whereas the wild type virus displayed such a defect only when NHEJ system was disrupted in any way. This effect was present in CRISPR/Cas9 modified 293T cells, in Jurkat and CEM lymphoid lines and in primary human PBMCs. CONCLUSIONS: Our data provide evidence that IN recruits DNA-PK to the site of HIV-1 post-integrational repair due to Ku70 binding-a novel finding that explains the involvement of DNA-PK despite the absence of free double stranded DNA breaks. In addition, our data clearly indicate the importance of interactions between HIV-1 IN and Ku70 in HIV-1 replication at the post-integrational repair step.


Assuntos
Reparo do DNA por Junção de Extremidades , Integrase de HIV/metabolismo , HIV-1/enzimologia , HIV-1/genética , Autoantígeno Ku/metabolismo , Quebras de DNA de Cadeia Dupla , Integrase de HIV/genética , Interações entre Hospedeiro e Microrganismos , Humanos , Autoantígeno Ku/genética , Redes e Vias Metabólicas
6.
Biochimie ; 102: 92-101, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24594066

RESUMO

Model studies of the subtype B and non-subtype B integrases are still required to compare their susceptibility to antiretroviral drugs, evaluate the significance of resistance mutations and identify the impact of natural polymorphisms on the level of enzymatic reactivity. We have therefore designed the consensus integrase of the HIV-1 subtype A strain circulating in the former Soviet Union territory (FSU-A) and two of its variants with mutations of resistance to the strand transfer inhibitor raltegravir. Their genes were synthesized, and expressed in E coli; corresponding His-tagged proteins were purified using the affinity chromatography. The enzymatic properties of the consensus integrases and their sensitivity to raltegravir were examined in a series of standard in vitro reactions and compared to the properties of the integrase of HIV-1 subtype B strain HXB2. The consensus enzyme demonstrated similar DNA-binding properties, but was significantly more active than HXB-2 integrase in the reactions of DNA cleavage and integration. All integrases were equally susceptible to inhibition by raltegravir and elvitegravir, indicating that the sporadic polymorphisms inherent to the HXB-2 enzyme have little effect on its susceptibility to drugs. Insensitivity of the mutated enzymes to the inhibitors of strand transfer occurred at a cost of a 30-90% loss of the efficacies of both 3'-processing and strand transfer. This is the first study to describe the enzymatic properties of the consensus integrase of HIV-1 clade A and the effects of the resistance mutations when the complex actions of sporadic sequence polymorphisms are excluded.


Assuntos
Infecções por HIV/virologia , Integrase de HIV/química , HIV-1/química , Modelos Químicos , Modelos Teóricos , Antirretrovirais/uso terapêutico , DNA Viral/genética , Farmacorresistência Viral/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Integrase de HIV/genética , Inibidores de Integrase de HIV/química , HIV-1/enzimologia , HIV-1/patogenicidade , Humanos , Mutação , Pirrolidinonas/uso terapêutico , Raltegravir Potássico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...