Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
CNS Neurosci Ther ; 26(5): 504-517, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31867846

RESUMO

AIMS: Mutations in DNA/RNA-binding factor (fused-in-sarcoma) FUS and superoxide dismutase-1 (SOD-1) cause amyotrophic lateral sclerosis (ALS). They were reproduced in SOD-1-G93A (SOD-1) and new FUS[1-359]-transgenic (FUS-tg) mice, where inflammation contributes to disease progression. The effects of standard disease therapy and anti-inflammatory treatments were investigated using these mutants. METHODS: FUS-tg mice or controls received either vehicle, or standard ALS treatment riluzole (8 mg/kg/day), or anti-inflammatory drug a selective blocker of cyclooxygenase-2 celecoxib (30 mg/kg/day) for six weeks, or a single intracerebroventricular (i.c.v.) infusion of Neuro-Cells (a preparation of 1.39 × 106 mesenchymal and hemopoietic human stem cells, containing 5 × 105 of CD34+ cells), which showed anti-inflammatory properties. SOD-1 mice received i.c.v.-administration of Neuro-Cells or vehicle. RESULTS: All FUS-tg-treated animals displayed less marked reductions in weight gain, food/water intake, and motor deficits than FUS-tg-vehicle-treated mice. Neuro-Cell-treated mutants had reduced muscle atrophy and lumbar motor neuron degeneration. This group but not celecoxib-FUS-tg-treated mice had ameliorated motor performance and lumbar expression of microglial activation marker, ionized calcium-binding adapter molecule-1 (Iba-1), and glycogen-synthase-kinase-3ß (GSK-3ß). The Neuro-Cells-treated-SOD-1 mice showed better motor functions than vehicle-treated-SOD-1 group. CONCLUSION: The neuropathology in FUS-tg mice is sensitive to standard ALS treatments and Neuro-Cells infusion. The latter improves motor outcomes in two ALS models possibly by suppressing microglial activation.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Anti-Inflamatórios/administração & dosagem , Transplante de Células-Tronco Hematopoéticas/métodos , Mediadores da Inflamação/antagonistas & inibidores , Transtornos das Habilidades Motoras/terapia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Células Cultivadas , Mediadores da Inflamação/metabolismo , Injeções Intraventriculares/métodos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Transtornos das Habilidades Motoras/genética , Transtornos das Habilidades Motoras/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Resultado do Tratamento
2.
Neuropharmacology ; 156: 107543, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30817932

RESUMO

The negative societal impacts associated with the increasing prevalence of violence and aggression is increasing, and, with this rise, is the need to understand the molecular and cellular changes that underpin ultrasound-induced aggressive behavior. In mice, stress-induced aggression is known to alter AMPA receptor subunit expression, plasticity markers, and oxidative stress within the brain. Here, we induced aggression in BALB/c mice using chronic ultrasound exposure and examined the impact of the psychoactive anti-oxidant compounds thiamine (vitamin B1), and its derivative benfotiamine, on AMPA receptor subunit expression, established plasticity markers, and oxidative stress. The administration of thiamine or benfotiamine (200 mg/kg/day) in drinking water decreased aggressive behavior following 3-weeks of ultrasound exposure and benfotiamine, reduced floating behavior in the swim test. The vehicle-treated ultrasound-exposed mice exhibited increases in protein carbonyl and total glutathione, altered AMPA receptor subunits expression, and decreased expression of plasticity markers. These ultrasound-induced effects were ameliorated by thiamine and benfotiamine treatment; in particular both antioxidants were able to reverse ultrasound-induced changes in GluA1 and GluA2 subunit expression, and, within the prefrontal cortex, significantly reversed the changes in protein carbonyl and polysialylated form of neural cell adhesion molecule (PSA-NCAM) expression levels. Benfotiamine was usually more efficacious than thiamine. Thus, the thiamine compounds were able to counteract ultrasound-induced aggression, which was accompanied by the normalization of markers that have been showed to be associated with ultrasound-induced aggression. These commonly used, orally-active compounds may have considerable potential for use in the control of aggression within the community. This article is part of the Special Issue entitled 'Current status of the neurobiology of aggression and impulsivity'.


Assuntos
Agressão/efeitos dos fármacos , Agressão/fisiologia , Antioxidantes/administração & dosagem , Plasticidade Neuronal/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Receptores de AMPA/metabolismo , Tiamina/análogos & derivados , Tiamina/administração & dosagem , Agressão/efeitos da radiação , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos da radiação , Depressão/fisiopatologia , Masculino , Camundongos Endogâmicos BALB C , Plasticidade Neuronal/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Receptores de AMPA/efeitos da radiação , Receptores de Serotonina/metabolismo , Receptores de Serotonina/efeitos da radiação , Ondas Ultrassônicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...