Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sleep ; 47(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37930351

RESUMO

Sleep is controlled by two processes-a circadian clock that regulates its timing and a homeostat that regulates the drive to sleep. Drosophila has been an insightful model for understanding both processes. For four decades, Borbély and Daan's two-process model has provided a powerful framework for understanding sleep regulation. However, the field of fly sleep has not employed such a model as a framework for the investigation of sleep. To this end, we have adapted the two-process model to the fly and established its utility by showing that it can provide empirically testable predictions regarding the circadian and homeostatic control of fly sleep. We show that the ultradian rhythms previously reported for loss-of-function clock mutants in the fly are robustly detectable and a predictable consequence of a functional sleep homeostat in the absence of a functioning circadian system. We find that a model in which the circadian clock speed and homeostatic rates act without influencing each other provides imprecise predictions regarding how clock speed influences the strength of sleep rhythms and the amount of daily sleep. We also find that quantitatively good fits between empirical values and model predictions were achieved only when clock speeds were positively correlated with rates of decay of sleep pressure. Our results indicate that longer sleep bouts better reflect the homeostatic process than the current definition of sleep as any inactivity lasting 5 minutes or more. This two-process model represents a powerful framework for work on the molecular and physiological regulation of fly sleep.


Assuntos
Relógios Circadianos , Proteínas de Drosophila , Animais , Drosophila/fisiologia , Relógios Circadianos/genética , Ritmo Circadiano/genética , Sono/fisiologia , Proteínas de Drosophila/genética
2.
Proc Biol Sci ; 290(2006): 20230149, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37700655

RESUMO

Circadian rhythms in physiology and behaviour have near 24 h periodicities that must adjust to the exact 24 h geophysical cycles on earth to ensure adaptive daily timing. Such adjustment is called entrainment. One major mode of entrainment is via the continuous modulation of circadian period by the prolonged presence of light. Although Drosophila melanogaster is a prominent insect model of chronobiology, there is little evidence for such continuous effects of light in the species. In this study, we demonstrate that prolonged light exposure at specific times of the day shapes the daily timing of activity in flies. We also establish that continuous UV- and blue-blocked light lengthens the circadian period of Drosophila and provide evidence that this is produced by the combined action of multiple photoreceptors which, includes the cell-autonomous photoreceptor cryptochrome. Finally, we introduce ramped light cycles as an entrainment paradigm that produces light entrainment that lacks the large light-driven startle responses typically displayed by flies and requires multiple days for entrainment to shifted cycles. These features are reminiscent of entrainment in mammalian models systems and make possible new experimental approaches to understanding the mechanisms underlying entrainment in the fly.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Ritmo Circadiano , Criptocromos , Planeta Terra , Mamíferos
3.
STAR Protoc ; 2(1): 100285, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33532734

RESUMO

This protocol describes a standardized method for analyzing Drosophila behavioral rhythmicity under light dark cycles, temperature ramps, and free running conditions. The protocol constitutes a step-by-step guide from generation of appropriate Drosophila genetic crosses to behavioral experiments. We also provide an open-source computational framework using R for the analysis of the phase of behavior using circular statistics. An extended method for complete use is also provided. For complete details on the use and execution of this protocol, please refer to Fernandez et al. (2020).


Assuntos
Comportamento Animal , Software , Animais , Drosophila melanogaster
4.
J Neurosci ; 36(35): 9084-96, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27581451

RESUMO

UNLABELLED: A sensitivity of the circadian clock to light/dark cycles ensures that biological rhythms maintain optimal phase relationships with the external day. In animals, the circadian clock neuron network (CCNN) driving sleep/activity rhythms receives light input from multiple photoreceptors, but how these photoreceptors modulate CCNN components is not well understood. Here we show that the Hofbauer-Buchner eyelets differentially modulate two classes of ventral lateral neurons (LNvs) within the Drosophila CCNN. The eyelets antagonize Cryptochrome (CRY)- and compound-eye-based photoreception in the large LNvs while synergizing CRY-mediated photoreception in the small LNvs. Furthermore, we show that the large LNvs interact with subsets of "evening cells" to adjust the timing of the evening peak of activity in a day length-dependent manner. Our work identifies a peptidergic connection between the large LNvs and a group of evening cells that is critical for the seasonal adjustment of circadian rhythms. SIGNIFICANCE STATEMENT: In animals, circadian clocks have evolved to orchestrate the timing of behavior and metabolism. Consistent timing requires the entrainment these clocks to the solar day, a process that is critical for an organism's health. Light cycles are the most important external cue for the entrainment of circadian clocks, and the circadian system uses multiple photoreceptors to link timekeeping to the light/dark cycle. How light information from these photorecptors is integrated into the circadian clock neuron network to support entrainment is not understood. Our results establish that input from the HB eyelets differentially impacts the physiology of neuronal subgroups. This input pathway, together with input from the compound eyes, precisely times the activity of flies under long summer days. Our results provide a mechanistic model of light transduction and integration into the circadian system, identifying new and unexpected network motifs within the circadian clock neuron network.


Assuntos
Ritmo Circadiano/fisiologia , Atividade Motora/fisiologia , Neurônios/fisiologia , Fotoperíodo , Células Fotorreceptoras de Invertebrados/fisiologia , Sono/fisiologia , Animais , Animais Geneticamente Modificados , Antígenos CD4/genética , Antígenos CD4/metabolismo , Cálcio/metabolismo , Ritmo Circadiano/genética , Criptocromos , AMP Cíclico/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histamina/farmacologia , Luz , Atividade Motora/genética , Rede Nervosa/fisiologia , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Interferência de RNA/fisiologia , Receptores Purinérgicos P2X2/genética , Receptores Purinérgicos P2X2/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Sono/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vias Visuais/fisiologia
5.
J Comp Neurol ; 498(2): 180-93, 2006 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-16856134

RESUMO

In the brain of the fly Drosophila melanogaster, approximately 150 clock-neurons are organized to synchronize and maintain behavioral rhythms, but the physiological and neurochemical bases of their interactions are largely unknown. Here we reevaluate the cellular properties of these pacemakers by application of a novel genetic reporter and several phenotypic markers. First, we describe an enhancer trap marker called R32 that specifically reveals several previously undescribed aspects of the fly's central neuronal pacemakers. We find evidence for a previously unappreciated class of neuronal pacemakers, the lateral posterior neurons (LPNs), and establish anatomical, molecular, and developmental criteria to establish a subclass within the dorsal neuron 1 (DN1) group of pacemakers. Furthermore, we show that the neuropeptide IPNamide is specifically expressed by this DN1 subclass. These observations implicate IPNamide as a second candidate circadian transmitter in the Drosophila brain. Finally, we present molecular and anatomical evidence for unrecognized phenotypic diversity within each of four established classes of clock neurons.


Assuntos
Relógios Biológicos , Drosophila melanogaster/anatomia & histologia , Neurônios , Animais , Biomarcadores/metabolismo , Ritmo Circadiano/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Genes Reporter , Bulbo/anatomia & histologia , Vias Neurais/anatomia & histologia , Neurônios/classificação , Neurônios/citologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period
6.
J Neurosci ; 26(9): 2531-43, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16510731

RESUMO

The molecular mechanisms of circadian rhythms are well known, but how multiple clocks within one organism generate a structured rhythmic output remains a mystery. Many animals show bimodal activity rhythms with morning (M) and evening (E) activity bouts. One long-standing model assumes that two mutually coupled oscillators underlie these bouts and show different sensitivities to light. Three groups of lateral neurons (LN) and three groups of dorsal neurons govern behavioral rhythmicity of Drosophila. Recent data suggest that two groups of the LN (the ventral subset of the small LN cells and the dorsal subset of LN cells) are plausible candidates for the M and E oscillator, respectively. We provide evidence that these neuronal groups respond differently to light and can be completely desynchronized from one another by constant light, leading to two activity components that free-run with different periods. As expected, a long-period component started from the E activity bout. However, a short-period component originated not exclusively from the morning peak but more prominently from the evening peak. This reveals an interesting deviation from the original Pittendrigh and Daan (1976) model and suggests that a subgroup of the ventral subset of the small LN acts as "main" oscillator controlling M and E activity bouts in Drosophila.


Assuntos
Encéfalo/citologia , Ritmo Circadiano/fisiologia , Neurônios/fisiologia , Periodicidade , Animais , Animais Geneticamente Modificados , Comportamento Animal , Criptocromos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas do Olho/genética , Expressão Gênica/genética , Imuno-Histoquímica/métodos , Luz , Atividade Motora/fisiologia , Neurônios/classificação , Neuropeptídeos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , Células Fotorreceptoras de Invertebrados , Receptores Acoplados a Proteínas G , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...