Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Infect Control ; 52(1): 73-80, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37544512

RESUMO

BACKGROUND: Starting January 4, 2021, our health system core microbiology laboratory changed blood culture identification (BCID) platforms to ePlex BCID from BioFire BCID1 with the additional capability to detect the blaCTX-M-Type gene of ESBL-producing organisms. Clinical outcomes of ESBL bloodstream infections (BSI) after implementing ePlex BCID were unknown. METHODS: Patients with ESBL BSI were compared pre and postimplementation of ePlex BCID in this 11-hospital retrospective analysis (BioFire BCID1 in 2019 vs ePlex BCID in 2021). The primary outcome was time from the Gram stain result to escalation to a carbapenem. Secondary outcomes included in-hospital mortality, 30-day readmission rate, length of stay (LOS), and the duration of antimicrobial therapy. RESULTS: A total of 275 patients were analyzed. The median time of Gram stain result to escalation to carbapenem was reduced from 44.5 hours with BioFire BCID1 to 7.9 hours with ePlex BCID (P < .001). There were no significant differences in mortality, 30-day readmission, or LOS. The duration of antimicrobial therapy for ESBL BSI was lower in the ePlex BCID group (from 14.4 days to 12.7 days, P = .014). CONCLUSIONS: Timely detection of the blaCTX-M-Type gene by BCID provides valuable information for the early initiation of appropriate and effective antimicrobial therapy. Although it was not associated with lower mortality, 30-day readmission, or LOS, it may have benefits such as decreasing antimicrobial exposure to patients.


Assuntos
Anti-Infecciosos , Bacteriemia , Sepse , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/uso terapêutico , Bacteriemia/diagnóstico , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Hemocultura , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Reação em Cadeia da Polimerase , Estudos Retrospectivos , Sepse/tratamento farmacológico
2.
Front Aging ; 3: 736835, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821804

RESUMO

Metformin may potentially reverse various age-related conditions; however, it is unclear whether metformin can also mitigate or delay the deterioration of immunological resilience that occurs in the context of infections that are commonly observed in older persons. We examined whether metformin promotes the preservation of immunological resilience in an acute S. pneumoniae (SPN) infection challenge in young adult mice. Mice were fed metformin (MET-alone) or standard chow (controls-alone) for 10 weeks prior to receiving intratracheal inoculation of SPN. A subset of each diet group received pneumococcal conjugate vaccine at week 6 (MET + PCV and control + PCV). Compared to controls-alone, MET-alone had significantly less infection-associated morbidity and attenuated inflammatory responses during acute SPN infection. Metformin lowered the expression of genes in the lungs related to inflammation as well as shorter lifespan in humans. This was accompanied by significantly lower levels of pro-inflammatory cytokines (e.g., IL6). MET + PCV vs. control + PCV manifested enhanced SPN anticapsular IgM and IgG levels. The levels of SPN IgM production negatively correlated with expression levels of genes linked to intestinal epithelial structure among MET + PCV vs. control + PCV groups. Correspondingly, the gut microbial composition of metformin-fed mice had a significantly higher abundance in the Verrucomicrobia, Akkermansia muciniphila, a species previously associated with beneficial effects on intestinal integrity and longevity. Together, these findings indicate metformin's immunoprotective potential to protect against infection-associated declines in immunologic resilience.

3.
J Invasive Cardiol ; 32(4): E86-E96, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32240097

RESUMO

BACKGROUND: Despite a range of devices, medical interventions, and revascularization techniques utilized in cardiogenic shock (CS), there is a lack of evidence guiding management. We sought to characterize the contemporary trials through utilization of the ClinicalTrials.gov database. METHODS: We investigated all phase II-IV interventional trials in the ClinicalTrials.gov database through June 29, 2019 that enrolled patients with CS. Published trials investigating medical interventions were evaluated for methodological quality using the Jadad scoring system. RESULTS: The initial query yielded 28 registered studies, of which 28 directly studied CS through whole or subgroup analyses. Of these, five were withdrawn or terminated, while 13 were recruiting, not yet recruiting, or were of unknown recruitment status. The remaining 10 were published and had a median patient size of 69 patients and a median site size of 6. Of the published studies, all-cause mortality was the most common primary endpoint (60%), including composite endpoints that included mortality. The remaining endpoints examined surrogate hemodynamic parameters of cardiac function through echocardiography. The mean Jadad score of the published trials investigating pharmacological therapies was 2.42. Of the trials investigating device therapies or revascularization methods, all were randomized, parallel-arm studies that were open label. CONCLUSIONS: Modern trials vary from single center to multicenter and are small in size. The primary endpoints were clinical, focusing on mortality and restoration of cardiac output or cardiac index. Methodological quality varies in the trials focused on pharmacologic therapy. Trials with devices or revascularization do not employ blinding, but do employ randomization.


Assuntos
Hemodinâmica , Choque Cardiogênico , Bases de Dados Factuais , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Choque Cardiogênico/diagnóstico , Choque Cardiogênico/terapia
4.
Arthritis Rheumatol ; 70(6): 841-854, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29439295

RESUMO

OBJECTIVE: Currently, there are no reliable biomarkers for predicting therapeutic response in patients with rheumatoid arthritis (RA). The synovium may unlock critical information for determining efficacy, since a reduction in the numbers of sublining synovial macrophages remains the most reproducible biomarker. Thus, a clinically actionable method for the collection of synovial tissue, which can be analyzed using high-throughput strategies, must become a reality. This study was undertaken to assess the feasibility of utilizing synovial biopsies as a precision medicine-based approach for patients with RA. METHODS: Rheumatologists at 6 US academic sites were trained in minimally invasive ultrasound-guided synovial tissue biopsy. Biopsy specimens obtained from patients with RA and synovial tissue from patients with osteoarthritis (OA) were subjected to histologic analysis, fluorescence-activated cell sorting, and RNA sequencing (RNA-seq). An optimized protocol for digesting synovial tissue was developed to generate high-quality RNA-seq libraries from isolated macrophage populations. Associations were determined between macrophage transcriptional profiles and clinical parameters in RA patients. RESULTS: Patients with RA reported minimal adverse effects in response to synovial biopsy. Comparable RNA quality was observed from synovial tissue and isolated macrophages between patients with RA and patients with OA. Whole tissue samples from patients with RA demonstrated a high degree of transcriptional heterogeneity. In contrast, the transcriptional profile of isolated RA synovial macrophages highlighted different subpopulations of patients and identified 6 novel transcriptional modules that were associated with disease activity and therapy. CONCLUSION: Performance of synovial tissue biopsies by rheumatologists in the US is feasible and generates high-quality samples for research. Through the use of cutting-edge technologies to analyze synovial biopsy specimens in conjunction with corresponding clinical information, a precision medicine-based approach for patients with RA is attainable.


Assuntos
Artrite Reumatoide/patologia , Macrófagos/metabolismo , Membrana Sinovial/patologia , Transcrição Gênica , Ultrassonografia/métodos , Idoso , Artrite Reumatoide/genética , Feminino , Humanos , Biópsia Guiada por Imagem/métodos , Masculino , Pessoa de Meia-Idade
5.
Blood ; 130(21): 2283-2294, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-28821477

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) reside in the supportive stromal niche in bone marrow (BM); when needed, however, they are rapidly mobilized into the circulation, suggesting that HSPCs are intrinsically highly motile but usually stay in the niche. We questioned what determines the motility of HSPCs. Here, we show that transforming growth factor (TGF)-ß-induced intracellular plasminogen activator inhibitor (PAI)-1 activation is responsible for keeping HSPCs in the BM niche. We found that the expression of PAI-1, a downstream target of TGF-ß signaling, was selectively augmented in niche-residing HSPCs. Functional inhibition of the TGF-ß-PAI-1 signal increased MT1-MMP-dependent cellular motility, causing a detachment of HSPCs from the TGF-ß-expressing niche cells, such as megakaryocytes. Furthermore, consistently high motility in PAI-1-deficient HSPCs was demonstrated by both a transwell migration assay and reciprocal transplantation experiments, indicating that intracellular, not extracellular, PAI-1 suppresses the motility of HSPCs, thereby causing them to stay in the niche. Mechanistically, intracellular PAI-1 inhibited the proteolytic activity of proprotein convertase Furin, diminishing MT1-MMP activity. This reduced expression of MT1-MMP in turn affected the expression levels of several adhesion/deadhesion molecules for determination of HSPC localization, such as CD44, VLA-4, and CXCR4, which then promoted the retention of HSPCs in the niche. Our findings open up a new field for the study of intracellular proteolysis as a regulatory mechanism of stem cell fate, which has the potential to improve clinical HSPC mobilization and transplantation protocols.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Espaço Intracelular/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Nicho de Células-Tronco , Fator de Crescimento Transformador beta/metabolismo , Animais , Medula Óssea/metabolismo , Movimento Celular , Espaço Extracelular/metabolismo , Furina/metabolismo , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Humanos , Metaloproteinase 14 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Multipotentes/metabolismo , Transdução de Sinais
6.
J Exp Med ; 214(8): 2387-2404, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28694385

RESUMO

Little is known about the relative importance of monocyte and tissue-resident macrophages in the development of lung fibrosis. We show that specific genetic deletion of monocyte-derived alveolar macrophages after their recruitment to the lung ameliorated lung fibrosis, whereas tissue-resident alveolar macrophages did not contribute to fibrosis. Using transcriptomic profiling of flow-sorted cells, we found that monocyte to alveolar macrophage differentiation unfolds continuously over the course of fibrosis and its resolution. During the fibrotic phase, monocyte-derived alveolar macrophages differ significantly from tissue-resident alveolar macrophages in their expression of profibrotic genes. A population of monocyte-derived alveolar macrophages persisted in the lung for one year after the resolution of fibrosis, where they became increasingly similar to tissue-resident alveolar macrophages. Human homologues of profibrotic genes expressed by mouse monocyte-derived alveolar macrophages during fibrosis were up-regulated in human alveolar macrophages from fibrotic compared with normal lungs. Our findings suggest that selectively targeting alveolar macrophage differentiation within the lung may ameliorate fibrosis without the adverse consequences associated with global monocyte or tissue-resident alveolar macrophage depletion.


Assuntos
Pulmão/patologia , Macrófagos Alveolares/patologia , Animais , Diferenciação Celular , Fibrose , Humanos , Pulmão/citologia , Camundongos , Monócitos/patologia
7.
J Transl Med ; 14(1): 170, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27287704

RESUMO

BACKGROUND: The risk for developing cardiovascular disease is greater in patients with rheumatoid arthritis (RA) than in the general population. While patients with RA also have dyslipidemia, the impact of dyslipidemia on the severity of inflammatory arthritis and associated cardiovascular disease is unclear. Currently, there are conflicting results regarding arthritis incidence in apolipoprotein E (ApoE) deficient mice, which spontaneously exhibit both hyperlipidemia and atherosclerosis. Here, we utilize a distinct approach to investigate the contribution of a hyperlipidemic environment on the development of arthritis and atherosclerosis in mice lacking ApoE. METHODS: K/BxN serum transfer-induced arthritis (STIA) was assessed in C57BL/6 (control) and ApoE(-/-) mice using clinical indices and immunohistochemical staining. Ankle synoviums were processed for flow cytometry. Aortic atherosclerosis was quantitated using Sudan IV staining. Serum cholesterol and cytokine levels were determined via enzymatic and luminex bead-based assays, respectively. RESULTS: ApoE(-/-) mice developed a sustained and enhanced semi-chronic inflammatory arthritis as compared to control mice. ApoE(-/-) mice had increased numbers of foamy macrophages, enhanced joint inflammation and amplified collagen deposition versus controls. The presence of arthritis did not exacerbate serum cholesterol levels or significantly augment the level of atherosclerosis in ApoE(-/-) mice. However, arthritic ApoE(-/-) mice exhibited a marked elevation of IL-6 as compared to non-arthritic ApoE(-/-) mice and arthritic C57BL/6 mice. CONCLUSIONS: Loss of ApoE potentiates a semi-chronic inflammatory arthritis. This heightened inflammatory response was associated with an increase in circulating IL-6 and in the number of foamy macrophages within the joint. Moreover, the foamy macrophages within the arthritic joint are reminiscent of those within unstable atherosclerotic lesions and suggest a pathologic role for foamy macrophages in propagating arthritis.


Assuntos
Apolipoproteínas E/deficiência , Artrite Experimental/patologia , Progressão da Doença , Animais , Artrite Experimental/sangue , Colesterol/sangue , Doença Crônica , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Inflamação/patologia , Interleucina-6/sangue , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Soro , Membrana Sinovial/patologia
8.
Bioorg Med Chem Lett ; 23(4): 1120-6, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23298810

RESUMO

Microsomal prostaglandin E(2) synthase-1 (mPGES-1) is a novel therapeutic target for the treatment of inflammation and pain. In the preceding letter, we detailed the discovery of clinical candidate PF-04693627, a potent mPGES-1 inhibitor possessing a novel benzoxazole structure. While PF-04693627 was undergoing further preclinical profiling, we sought to identify a back-up mPGES-1 inhibitor that differentiated itself from PF-04693627. The design, synthesis, mPGES-1 activity and in vivo PK of a novel set of substituted benzoxazoles are described herein. Also described is a conformation-based hypothesis for mPGES-1 activity based on the preferred conformation of the cyclohexane ring within this class of inhibitors.


Assuntos
Benzoxazóis/química , Benzoxazóis/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Oxirredutases Intramoleculares/antagonistas & inibidores , Benzoxazóis/síntese química , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Humanos , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/metabolismo , Modelos Moleculares , Conformação Molecular , Prostaglandina-E Sintases , Relação Estrutura-Atividade
9.
Bioorg Med Chem Lett ; 23(4): 1114-9, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23260349

RESUMO

Inhibition of mPGES-1, the terminal enzyme in the arachidonic acid/COX pathway to regulate the production of pro-inflammatory prostaglandin PGE2, is considered an attractive new therapeutic target for safe and effective anti-inflammatory drugs. The discovery of a novel series of orally active, selective benzoxazole piperidinecarboxamides as mPGES-1 inhibitors is described. Structure-activity optimization of lead 5 with cyclohexyl carbinols resulted in compound 12, which showed excellent in vitro potency and selectivity against COX-2, and reasonable pharmacokinetic properties. Further SAR studies of the benzoxazole ring substituents lead to a novel series of highly potent compounds with improved PK profile, including 23, 26, and 29, which were effective in a carrageenan-stimulated guinea pig air pouch model of inflammation. Based on its excellent in vitro and in vivo pharmacological, pharmacokinetic and safety profile and ease of synthesis, compound 26 (PF-4693627) was advanced to clinical studies.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inflamação/tratamento farmacológico , Oxirredutases Intramoleculares/antagonistas & inibidores , Descoberta de Drogas , Humanos , Inflamação/enzimologia , Oxirredutases Intramoleculares/metabolismo , Prostaglandina-E Sintases , Relação Estrutura-Atividade
10.
Int Immunopharmacol ; 10(10): 1170-6, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20609399

RESUMO

In this report, we show that apoptosis signal-regulating kinase 1(-/-) (ASK1 KO) mice were resistant to inflammatory arthritis induced in the K/BxN serum transfer model of rheumatoid arthritis (RA). The p38 inhibitor, SD-0006 was administered to wild type (WT) mice as a comparator. Both ASK1 KO and p38 inhibition resulted in marked attenuation of edema, cartilage damage, bone resorption, and general inflammatory responses. Transcriptional profiling of mRNA prepared from paw tissue demonstrated that the production of many proinflammatory genes including cytokines, chemokines, and extracellular matrix degradative enzymes were maintained at basal levels by either ASK1 KO or prophylactic p38 MAPK inhibition. In the mouse whole blood (MWB) assay, tumor necrosis factor-α (TNF-α)-induced KC and CCL2 levels and also LPS-induced interleukin-6 (IL-6), CCL2, and KC levels in MWB from ASK1 KO were significantly lower than those from WT. Furthermore, both p38 and JNK were activated by TNF-α in human synovial fibroblasts isolated from RA patients (RASF). SD-0006 or SP600125, a JNK inhibitor, partially blocked the elevation of IL-6 production in RASF following stimulation with TNF-α. In contrast, dual inhibition with both p38/JNK inhibitors almost completely abolished TNF-α-induced IL-6 production from these cells. Ablation of ASK1 expression in RASF using siRNA for ASK1 resulted in inhibition of TNF-α-induced IL-6 and PGE(2) production. This study is the first to suggest that ASK1 is critical for the development of RA and that ASK1 may be involved in the production of proinflammatory mediators in response to TNF-α stimulation in the RA joint.


Assuntos
Apoptose/fisiologia , Artrite/induzido quimicamente , MAP Quinase Quinase Quinase 5/metabolismo , Animais , Artrite/patologia , Artrite Reumatoide/metabolismo , Células Cultivadas , Dinoprostona/genética , Dinoprostona/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Humanos , Interleucina-6 , MAP Quinase Quinase Quinase 5/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pirazóis/toxicidade , Pirimidinas/toxicidade , Fator de Necrose Tumoral alfa/farmacologia
11.
Biochem Pharmacol ; 79(10): 1445-54, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20067770

RESUMO

Inflammation-induced microsomal prostaglandin E synthase-1 (mPGES-1) is the terminal enzyme that synthesizes prostaglandin E(2) (PGE(2)) downstream of cyclooxygenase-2 (COX-2). The efficacy of nonsteroidal anti-inflammatory drugs and COX-2 inhibitors in the treatment of the signs and symptoms of osteoarthritis, rheumatoid arthritis and inflammatory pain, largely attributed to the inhibition of PGE(2) synthesis, provides a rationale for exploring mPGES-1 inhibition as a potential novel therapy for these diseases. Toward this aim, we identified PF-9184 as a novel mPGES-1 inhibitor. PF-9184 potently inhibited recombinant human (rh) mPGES-1 (IC(50)=16.5+/-3.8nM), and had no effect against rhCOX-1 and rhCOX-2 (>6500-fold selectivity). In inflammation and clinically relevant biological systems, mPGES-1 expression, like COX-2 expression was induced in cell context- and time-dependent manner, consistent with the kinetics of PGE(2) synthesis. In rationally designed cell systems ideal for determining direct effects of the inhibitors on mPGES-1 function, but not its expression, PF-9184 inhibited PGE(2) synthesis (IC(50) in the range of 0.5-5 microM in serum-free cell and human whole blood cultures, respectively) while sparing the synthesis of 6-keto-PGF(1alpha) (PGF(1alpha)) and PGF(2alpha). In contrast, as expected, the selective COX-2 inhibitor, SC-236, inhibited PGE(2), PGF(1alpha) and PGF(2alpha) synthesis. This profile of mPGES-1 inhibition, distinct from COX-2 inhibition in cells, validates mPGES-1 as an attractive target for therapeutic intervention.


Assuntos
Óxidos S-Cíclicos/antagonistas & inibidores , Inibidores de Ciclo-Oxigenase 2/farmacologia , Oxirredutases Intramoleculares/antagonistas & inibidores , Tiazinas/antagonistas & inibidores , Animais , Artrite Reumatoide/metabolismo , Carragenina/farmacologia , Células Cultivadas , Ciclo-Oxigenase 2/biossíntese , Ciclo-Oxigenase 2/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Expressão Gênica/efeitos dos fármacos , Humanos , Immunoblotting , Interleucina-1beta/farmacologia , Oxirredutases Intramoleculares/biossíntese , Oxirredutases Intramoleculares/metabolismo , Microssomos/efeitos dos fármacos , Microssomos/enzimologia , Prostaglandina-E Sintases , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
J Pharmacol Exp Ther ; 329(1): 14-25, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19168710

RESUMO

Nuclear factor (NF)-kappaB activation has been clearly linked to the pathogenesis of multiple inflammatory diseases including arthritis. The central role that IkappaB kinase-2 (IKK-2) plays in regulating NF-kappaB signaling in response to inflammatory stimuli has made this enzyme an attractive target for therapeutic intervention. Although diverse chemical classes of IKK-2 inhibitors have been identified, the binding kinetics of these inhibitors has limited the scope of their applications. In addition, safety assessments of IKK-2 inhibitors based on a comprehensive understanding of the pharmacokinetic/pharmacodynamic relationships have yet to be reported. Here, we describe a novel, potent, and highly selective IKK-2 inhibitor, PHA-408 [8-(5-chloro-2-(4-methylpiperazin-1-yl)isonicotinamido)-1-(4-fluorophenyl)-4,5-dihydro-1H-benzo[g]indazole-3-carboxamide]. PHA-408 is an ATP-competitive inhibitor, which binds IKK-2 tightly with a relatively slow off rate. In arthritis-relevant cells and animal models, PHA-408 suppresses inflammation-induced cellular events, including IkappaBalpha phosphorylation and degradation, p65 phosphorylation and DNA binding activity, the expression of inflammatory mediators, and joint pathology. PHA-408 was efficacious in a chronic model of arthritis with no adverse effects at maximally efficacious doses. Stemming from its ability to bind tightly to IKK-2, as a novelty, we demonstrated that PHA-408-mediated inhibition of IKK-2 activity correlated very well with its ability to modulate the fate of IKK-2 substrates and downstream transcriptional events. We ultimately directly linked IKK-2 activity ex vivo and in vivo to markers of inflammation with the inhibitor plasma concentrations. Thus, PHA-408 represents a powerful tool to further gain insight into the mechanisms by which IKK-2 regulates NF-kappaB signaling and validates IKK-2 as a therapeutic target.


Assuntos
Artrite/patologia , Inibidores Enzimáticos/farmacologia , Quinase I-kappa B/antagonistas & inibidores , NF-kappa B/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/patologia , Western Blotting , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Ensaio de Desvio de Mobilidade Eletroforética , Inibidores Enzimáticos/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Quinase I-kappa B/metabolismo , Inflamação/induzido quimicamente , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Ratos , Ratos Endogâmicos Lew , Proteínas Recombinantes/metabolismo , Streptococcus/imunologia , Líquido Sinovial/citologia , Líquido Sinovial/efeitos dos fármacos , Espectrometria de Massas em Tandem , Tomografia Computadorizada por Raios X , Fator de Transcrição RelA/genética , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...