Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 904: 166566, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37643710

RESUMO

The focus of the present study was to assess the dynamics of wetland ecosystem health in both urban and rural settings situated in the high-altitude Kashmir Himalayan ecoregion. The basic aim was to identify the drivers responsible for wetland degradation in order to sustain ecosystem services effectively. To achieve this, we examined water quality, trophic status, fish species diversity and human disturbances by analyzing changes in land use and land cover (LULC) since 1980. For the limnological characterization of the two wetlands, we evaluated a total of 21 physico-chemical parameters at 24 sites. Two-way analysis of variance revealed significant (p < 0.05) spatial and temporal variability in the water quality parameters. The trophic state index values of 67.7 and 76.7 indicated that the rural and urban wetlands were in eutrophic and hypertrophic status, respectively, signifying potential environmental stress. The data on fish fauna indicated a decline in fish species over the past 40 years, particularly the schizothoracine species. Urban wetlands showed a more significant decrease in species (06) compared to rural wetlands (01). LULC mapping and change analysis employing the visual interpretation technique showed significant transformations in the immediate catchment of wetlands. Substantial growth in the built-up (433.2 % and 2620 %) and decrease in aquatic vegetation (-83.4 % and - 97.5 %) in the immediate catchment was recorded in both the urban and rural wetlands respectively from 1980 to 2020. Our findings demonstrated a relationship between LULC classes and water quality parameters, with an increase in built-up and road areas showing a significant positive correlation with the rise in decadal mean values of total phosphorus, orthophosphorus, nitrate nitrogen, ammonical nitrogen, and calcium content. Based on these observations, we concluded that changes in land use and land cover within the immediate catchment areas of the wetlands were the primary drivers responsible for the deterioration of wetland ecosystem health.


Assuntos
Ecossistema , Áreas Alagadas , Humanos , Altitude , Monitoramento Ambiental/métodos , Conservação dos Recursos Naturais , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA