Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 25(20): 20097-20105, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29748798

RESUMO

This article investigates the innovative attached cultivation of Chlorella vulgaris (C. vulgaris) using different materials as an alternative to high capital techniques of harvesting such as centrifugation, flocculation, and filtration. A simple attached algal cultivation system was proposed that was equipped by 10 submerged supporting materials which can harvest algal cells, efficiently. The effect of operational parameters such as light intensity, the rate of aeration, and auto-harvesting time was investigated. A chip, durable, and abundant cellulosic material (Kaldnes carriers covered by kenafs, KCCKs) was proposed for auto-harvesting C. vulgaris cells. The results revealed that optimum aeration rate, light intensity, and auto-harvesting of microalgal cells were 3.6 vvm, 10,548 W/m2, and 12 days, respectively. Six of these KCCKs had the highest biofilm formation percent up to 33%. In this condition, the rate of cell growth increased to 0.6 mg/cm2. Therefore, this system can be used for appropriate auto-harvesting of microalgae in the attached growth systems. C. vulgaris biomass composition is valuable for biodiesel, bioethanol, and animal protein production.


Assuntos
Biomassa , Chlorella vulgaris/crescimento & desenvolvimento , Eliminação de Resíduos Líquidos/métodos , Microalgas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA