Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 42(4): 2034-2042, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37286365

RESUMO

The inflicted chaos instigated by the SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) globally continues with the emergence of novel variants. The current global outbreak is aggravated by the manifestation of novel variants, which affect the effectiveness of the vaccine, attachment with hACE2 (human Angiotensin-converting enzyme 2) and immune evasion. Recently, a new variant named University Hospital Institute (IHU) (B.1.640.2) was reported in France in November 2021 and is spreading globally affecting public healthcare. The B.1.640.2 SARS-CoV-2 strain revealed 14 mutations and 9 deletions in spike protein. Thus, it is important to understand how these variations in the spike protein impact the communication with the host. A protein coupling approach along with molecular simulation protocols was used to interpret the variation in the binding of the wild type (WT) and B.1.640.2 variant with hACE2 and Glucose-regulating protein 78 (GRP78) receptors. The initial docking scores revealed a stronger binding of the B.1.640.2-RBD with both the hACE2 and GRP78. To further understand the crucial dynamic changes, we looked at the structural and dynamic characteristics and also explored the variations in the bonding networks between the WT and B.1.640.2-RBD (receptor-binding domain) in association with hACE2 and GRP78, respectively. Our findings revealed that the variant complex demonstrated distinct dynamic properties in contrast to the wild type due to the acquired mutations. Finally, to provide conclusive evidence on the higher binding by the B.1.640.2 variant the TBE was computed for each complex. For the WT with hACE2 the TBE was quantified to be-61.38 ± 0.96 kcal/mol and for B.1.640.2 variant the TBE was estimated to be -70.47 ± 1.00 kcal/mol. For the WT-RBD-GRP78 the TBE -was computed to be 32.32 ± 0.56 kcal/mol and for the B.1.640.2-RBD a TBE of -50.39 ± 0.88 kcal/mol was reported. This show that these mutations are the basis for higher binding and infectivity produced by B.1.640.2 variant and can be targeted for drug designing against it.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Humanos , Chaperona BiP do Retículo Endoplasmático , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
2.
Comput Biol Med ; 146: 105574, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35533461

RESUMO

With the emergence of Delta and Omicron variants, many other important variants of SARS-CoV-2, which cause Coronavirus disease-2019, including A.30, are reported to increase the concern created by the global pandemic. The A.30 variant, reported in Tanzania and other countries, harbors spike gene mutations that help this strain to bind more robustly and to escape neutralizing antibodies. The present study uses molecular modelling and simulation-based approaches to investigate the key features of this strain that result in greater infectivity. The protein-protein docking results for the spike protein demonstrated that additional interactions, particularly two salt-bridges formed by the mutated residue Lys484, increase binding affinity, while the loss of key residues at the N terminal domain (NTD) result in a change to binding conformation with monoclonal antibodies, thus escaping their neutralizing effects. Moreover, we deeply studied the atomic features of these binding complexes through molecular simulation, which revealed differential dynamics when compared to wild type. Analysis of the binding free energy using MM/GBSA revealed that the total binding free energy (TBE) for the wild type receptor-binding domain (RBD) complex was -58.25 kcal/mol in contrast to the A.30 RBD complex, which reported -65.59 kcal/mol. The higher TBE for the A.30 RBD complex signifies a more robust interaction between A.30 variant RBD with ACE2 than the wild type, allowing the variant to bind and spread more promptly. The BFE for the wild type NTD complex was calculated to be -65.76 kcal/mol, while the A.30 NTD complex was estimated to be -49.35 kcal/mol. This shows the impact of the reported substitutions and deletions in the NTD of A.30 variant, which consequently reduce the binding of mAb, allowing it to evade the immune response of the host. The reported results will aid the development of cross-protective drugs against SARS-CoV-2 and its variants.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Humanos , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
3.
J Biomol Struct Dyn ; 39(13): 4659-4670, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32552361

RESUMO

The current coronavirus (SARS-COV-2) pandemic and phenomenal spread to every nook and cranny of the world has raised major apprehensions about the modern public health care system. So far as a result of this epidemic, 4,434,653 confirmed cases and 302,169 deaths are reported. The growing infection rate and death toll demand the use of all possible approaches to design novel drugs and vaccines to curb this disease. In this study, we combined drugs repurposing and virtual drug screening strategies to target 3CLpro, which has an essential role in viral maturation and replication. A total of 31 FDA approved anti-HIV drugs, and Traditional Chinese medicines (TCM) database were screened to find potential inhibitors. As a result, Saquinavir, and five drugs (TCM5280805, TCM5280445, TCM5280343, TCM5280863, and TCM5458190) from the TCM database were found as promising hits. Furthermore, results from molecular dynamics simulation and total binding free energy revealed that Saquinavir and TCM5280805 target the catalytic dyad (His41 and Cys145) and possess stable dynamics behavior. Thus, we suggest that these compounds should be tested experimentally against the SARS-COV-2 as Saquinavir has been reported to inhibit HIV protease experimentally. Considering the intensity of coronavirus dissemination, the present research is in line with the idea of discovering the latest inhibitors against the coronavirus essential pathways to accelerate the drug development cycle.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Reposicionamento de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia , SARS-CoV-2
4.
RSC Adv ; 10(58): 35565-35573, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35515677

RESUMO

Pyrazinamide (PZA) is one of the essential anti-mycobacterium drugs, active against non-replicating Mycobacterium tuberculosis (MTB) isolates. PZA is converted into its active state, called pyrazinoic acid (POA), by action of pncA encoding pyrazinamidase (PZase). In the majority of PZA-resistance isolates, pncA harbored mutations in the coding region. In our recent report, we detected a number of novel variants in PZA-resistance (PZAR) MTB isolates, whose resistance mechanisms were yet to be determined. Here we performed several analyses to unveil the PZAR mechanism of R123P, T76P, G150A, and H71R mutants (MTs) through molecular dynamics (MD) simulations. In brief, culture positive MTB isolates were subjected to PZA susceptibility tests using the WHO recommended concentration of PZA (100 µg ml-1). The PZAR samples were screened for mutations in pncA along sensitive isolates through polymerase chain reactions and sequencing. A large number of variants (GeneBank accession no. MH461111), including R123P, T76P, G150A, and H71R, have been spotted in more than 70% of isolates. However, the mechanism of PZAR for mutants (MTs) R123P, T76P, G150A, and H71R was unknown. For the MTs and native PZase structures (WT), thermodynamic properties were compared using molecular dynamics simulations for 100 ns. The MTs structural activity was compared to the WT. Folding effect and pocket volume variations have been detected when comparing between WT and MTs. Geometric matching further confirmed the effect of R123P, T76P, G150A, and H71R mutations on PZase dynamics, making them vulnerable for activating the pro-drug into POA. This study offers a better understanding for management of PZAR TB. The results may be used as alternative diagnostic tools to infer PZA resistance at a structural dynamics level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...