Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 4): 127117, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37774822

RESUMO

Although dye-decolourising peroxidases (DyPs) are well-known for lignin degradation, a comprehensive understanding of their mechanism remains unclear. Therefore, studying the mechanism of lignin degradation by DyPs is necessary for industrial applications and enzyme engineering. In this study, a dye-decolourising peroxidase (CsDyP) gene from C. serinivorans was heterologously expressed and studied for its lignin degradation potential. Molecular docking analysis predicted the binding of 2, 2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), veratryl alcohol (VA), 2, 6-dimethylphenol (2, 6- DMP), guaiacol (GUA), and lignin to the substrate-binding pocket of CsDyP. Evaluation of the enzymatic properties showed that CsDyP requires pH 4.0 and 30 °C for optimal activity and has a high affinity for ABTS. In addition, CsDyP is stable over a wide range of temperatures and pH and can tolerate 5.0 mM organic solvents. Low NaCl concentrations promoted CsDyP activity. Further, CsDyP significantly reduced the chemical oxygen demand decolourised alkali lignin (AL) and milled wood lignin (MWL). CsDyP targets the ß-O-4, CO, and CC bonds linking lignin's G, S, and H units to depolymerize and produce aromatic compounds. Overall, this study delivers valuable insights into the lignin degradation mechanism of CsDyP, which can benefit its industrial applications and lignin valorization.


Assuntos
Lignina , Peroxidase , Peroxidase/metabolismo , Lignina/química , Simulação de Acoplamento Molecular , Oxirredução , Peroxidases/metabolismo , Corantes/química
2.
Arch Microbiol ; 204(5): 243, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35381886

RESUMO

Biofilm formation is a major issue in healthcare settings as 75% of nosocomial infection arises due to biofilm residing bacteria. Exopolysaccharides (EPS), a key component of the biofilm matrix, contribute to the persistence of cells in a complex milieu and defends greatly from exogenous stress and demolition. It has been shown to be vital for biofilm scaffold and pathogenic features. The present study was aimed to investigate the effectiveness of four domain-containing α-amylase from Streptomyces griseus (SGAmy) in disrupting the EPS of multidrug-resistant bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. In vitro analysis of preformed biofilm unveiled the antibiofilm efficacy of SGAmy against MRSA (85%, p < 0.05) and P. aeruginosa (82%, p < 0.05). The total carbohydrate content in the EPS matrix of MRSA and P. aeruginosa was significantly reduced to 71.75% (p < 0.01) and 74.09% (p < 0.01), respectively. The findings inferred from in vitro analysis were further corroborated through in vivo studies using an experimental model organism, Danio rerio. Remarkably, the survival rate was extended to 88.8% (p < 0.05) and 74.2% (p < 0.05) in MRSA and P. aeruginosa infected fishes, respectively. An examination of gills, kidneys, and intestines of D. rerio organs depicted the reduced level of microbial colonization in SGAmy-treated cohorts and these findings were congruent with bacterial enumeration results.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Streptomyces griseus , Animais , Antibacterianos/farmacologia , Bactérias , Biofilmes , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Peixe-Zebra , alfa-Amilases
3.
Mol Biotechnol ; 64(5): 575-589, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35018617

RESUMO

The present study was aimed to investigate the effect of docosanol on the protein expression profile of methicillin-resistant Staphylococcus aureus (MRSA). Thus, two-dimensional gel electrophoresis coupled with MALDI-TOF MS technique was utilized to identify the differentially regulated proteins in the presence of docosanol. A total of 947 protein spots were identified from the intracellular proteome of both control and docosanol treated samples among which 40 spots were differentially regulated with a fold change greater than 1.0. Prominently, the thiol-dependent antioxidant system and stress response proteins are downregulated in MRSA, which are critical for survival during oxidative stress. In particular, docosanol downregulated the expression of Tpx, AhpC, BshC, BrxA, and YceI with a fold change of 1.4 (p = 0.02), 1.4 (p = 0.01), 1.6 (p = 0.002), 4.9 (p = 0.02), and 1.4 (p = 0.02), respectively. In addition, docosanol reduced the expression of proteins involved in purine metabolic pathways, biofilm growth cycle, and virulence factor production. Altogether, these findings suggest that docosanol could efficiently target the antioxidant pathway by reducing the expression of bacillithiol and stress-associated proteins.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Antioxidantes/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Álcoois Graxos , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Proteoma/genética , Proteoma/metabolismo , Compostos de Sulfidrila/metabolismo
4.
Molecules ; 26(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34771095

RESUMO

Previous reports have shown that consumption of wine has several health benefits; however, there are different types of wine. In the present study, red wines were investigated for their compositions of active ingredients. The interaction of each component in terms of its binding mode with different serum proteins was unraveled, and the components were implicated as drug candidates in clinical settings. Overall, the study indicates that red wines have a composition of flavonoids, non-flavonoids, and phenolic acids that can interact with the key regions of proteins to enhance their biological activity. Among them, rutin, resveratrol, and tannic acid have shown good binding affinity and possess beneficial properties that can enhance their role in clinical applications.


Assuntos
Biomarcadores/sangue , Proteínas Sanguíneas/antagonistas & inibidores , Flavonoides/farmacologia , Vinho/análise , Bebidas Alcoólicas , Antioxidantes/análise , Sítios de Ligação , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Flavonoides/química , Flavonoides/farmacocinética , Fluorometria/métodos , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Fenóis , Ligação Proteica , Relação Estrutura-Atividade , Vinho/efeitos adversos
5.
J Biomol Struct Dyn ; 39(13): 4594-4609, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32573351

RESUMO

In the present study, we have explored the interaction of the active components from 10 different medicinal plants of Indian origin that are commonly used for treating cold and respiratory-related disorders, through molecular docking analysis. In the current scenario, COVID-19 patients experience severe respiratory syndromes, hence it is envisaged from our study that these traditional medicines are very likely to provide a favourable effect on COVID-19 infections. The active ingredients identified from these natural products are previously reported for antiviral activities against large group of viruses. Totally 47 bioactives identified from the medicinal plants were investigated against the structural targets of SARS-CoV-2 (Mpro and spike protein) and human ACE2 receptor. The top leads were identified based on interaction energies, number of hydrogen bond and other parameters that explain their potency to inhibit SARS-CoV-2. The bioactive ligands such as Cucurbitacin E, Orientin, Bis-andrographolide, Cucurbitacin B, Isocucurbitacin B, Vitexin, Berberine, Bryonolic acid, Piperine and Magnoflorine targeted the hotspot residues of SARS-CoV-2 main protease. In fact, this protease enzyme has an essential role in mediating the viral replication and therefore compounds targeting this key enzyme are expected to block the viral replication and transcription. The top scoring conformations identified through docking analysis were further demonstrated with molecular dynamics simulation. Besides, the stability of the conformation was studied in detail by investigating the binding free energy using MM-PBSA method. Overall, the study emphasized that the proposed hit Cucurbitacin E and orientin could serve as a promising scaffold for developing anti-COVID-19 drug.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Descoberta de Drogas , Humanos , Medicina Tradicional , Simulação de Acoplamento Molecular , SARS-CoV-2 , Replicação Viral
6.
Molecules ; 25(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120936

RESUMO

Our recently published in vivo studies and growing evidence suggest that moderate consumption of beer possesses several health benefits, including antioxidant and cardiovascular effects. Although beer contains phenolic acids and flavonoids as the major composition, and upon consumption, the levels of major components increase in the blood, there is no report on how these beer components interact with main human serum proteins. Thus, to address the interaction potential between beer components and human serum proteins, the present study primarily aims to investigate the components of beer from different industrial sources as well as their mode of interaction through in silico analysis. The contents of the bioactive compounds, antioxidant capacities and their influence on binding properties of the main serum proteins in human metabolism (human serum albumin (HSA), plasma circulation fibrinogen (PCF), C-reactive protein (CRP) and glutathione peroxidase 3 (GPX3)) were studied. In vitro and in silico studies indicated that phenolic substances presented in beer interact with the key regions of the proteins to enhance their antioxidant and health properties. We hypothesize that moderate consumption of beer could be beneficial for patients suffering from coronary artery disease (CAD) and other health advantages by regulating the serum proteins.


Assuntos
Cerveja/análise , Proteínas Sanguíneas/metabolismo , Simulação por Computador , Saúde , Fenóis/análise , Fenóis/metabolismo , Antioxidantes/análise , Antioxidantes/metabolismo , Proteínas Sanguíneas/química , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica
7.
Appl Microbiol Biotechnol ; 98(15): 6775-85, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24723295

RESUMO

Candida albicans is an important opportunistic fungal pathogen, responsible for biofilm associated infections in immunocompromised patients. The aim of the present study was to investigate the antibiofilm properties of novel levofloxacin derivatives on C. albicans biofilms. The levofloxacin derivatives at their Biofilm Inhibitory Concentrations (BIC) were able to inhibit the biofilms of C. albicans, the yeast-to-hyphal transition and were also able to disrupt their mature biofilms. Furthermore, Real-time PCR analysis showed that the expression of ergosterol biosynthesis pathway gene (ERG11) and the efflux pump-encoding genes (CDR1 and MDR1) was decreased upon treatment with the levofloxacin derivatives. The total ergosterol content quantified using UV spectrophotomer showed decrease in ergosterol in the presence of levofloxacin derivatives. Overall, levofloxacin derivatives (6a, 6c and 7d) are capable of inhibiting C. albicans virulence factors. Therefore, these compounds with potential therapeutic implications can be used as new strategy to treat biofilm-related candidal infections.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Levofloxacino/farmacologia , Fatores de Virulência/genética , Biofilmes/efeitos dos fármacos , Candida albicans/genética , Candida albicans/fisiologia , Proteínas Fúngicas/metabolismo , Levofloxacino/química , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...