Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Biophys ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982021

RESUMO

Type-II diabetes mellitus is a chronic disorder that results from fluctuations in the glucose level leading to hyperglycemia with severe adverse effects increasing worldwide. Alpha-Amylase is the key enzyme involved in the mechanism of glucose formation therefore Alpha-Amylase inhibitors have become a therapeutic target in the development of new leads as they have the potential to suppress glucose levels. Existing drugs targeting Alpha-Amylase highlight major drawbacks in terms of poor absorption rate that causes several gastrointestinal issues. So, this research is aimed to develop novel inhibitors interacting with Alpha-Amylase's active site using structural-based screening, binding pattern analysis, and molecular dynamic simulation. Hence, to search for a potential lead, we analyzed a total of 133 valiolamine derivatives and 535 desoxynojirimycin derivatives that exhibited drug-like properties screened through Lipinski filters. Virtual screening followed by binding interaction analysis we identified ten compounds that exhibited better binding energy scores compared to the standard drugs voglibose and miglitol, used in our study. The docking analysis, ADMET and metabolic site prediction estimated the best top two compounds with good drug profiles. Further, top compounds VG9 and VG15 were promoted to simulation study using the Biovia Discovery study to access the stability at a time interval of 100 ns. MD simulation results revealed that our compound VG9 possesses better conformational stability in the complex to the active site residues of Alpha-Amylase target protein than standard drug voglibose. Thus, our investigation revealed that compound VG9 also exhibits the best pharmacokinetic as well as binding affinity results and could act as a potential lead compound targeting Alpha-Amylase for Type II diabetes.

2.
J Biomol Struct Dyn ; : 1-23, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37921704

RESUMO

Non-small cell lung cancer, head and neck cancer, glioblastoma, and various other cancer types often demonstrate persistent elevation in EGFR tyrosine kinase activity due to acquired mutations in its kinase domain. Any alteration in the EGFR is responsible for triggering the upregulation of tumor angiogenic pathways, such as the PI3k-AKT-mTOR pathway, MAPK-ERK pathway and PLC-Ƴ pathway, which are critically involved in promoting tumor angiogenesis in cancer cells. The emergence of frequently occurring EGFR kinase domain mutations (L858R/T790M/C797S) that confer resistance to approved therapeutic agents has presented a significant challenge for researchers aiming to develop effective and well-tolerated treatments against tumor angiogenesis. In this study, we directed our efforts towards the rational design and development of novel quinazoline derivatives with the potential to act as antagonists against both wild-type and mutant EGFR. Our approach encompasing the application of advanced drug design strategies, including structure-based virtual screening, molecular docking, molecular dynamics, metabolic reactivity and cardiotoxicity prediction studies led to the identification of two prominent lead compounds: QU648, for EGFRwt inhibition and QU351, for EGFRmt antagonism. The computed binding energies of selected leads and their molecular dynamics simulations exhibited enhanced conformational stability of QU648 and QU351 when compared to standard drugs Erlotinib and Afatinib. Notably, the lead compounds also demonstrated promising pharmacokinetic properties, metabolic reactivity, and cardiotoxicity profiles. Collectively, the outcomes of our study provide compelling evidence supporting the potential of QU648 and QU351 as prominent anti-angiogenic agents, effectively inhibiting EGFR activity across various cancer types harboring diverse EGFR mutations.Communicated by Ramaswamy H. Sarma.

3.
Viruses ; 13(2)2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33672054

RESUMO

Coronavirus disease-19 (COVID-19) pandemic, caused by the novel SARS-CoV-2 virus, continues to be a global threat. The number of cases and deaths will remain escalating due to the lack of effective therapeutic agents. Several studies have established the importance of the viral main protease (Mpro) in the replication of SARS-CoV-2 which makes it an attractive target for antiviral drug development, including pharmaceutical repurposing and other medicinal chemistry approaches. Identification of natural products with considerable inhibitory potential against SARS-CoV-2 could be beneficial as a rapid and potent alternative with drug-likeness by comparison to de novo antiviral drug discovery approaches. Thereof, we carried out the structure-based screening of natural products from Echinacea-angustifolia, commonly used to prevent cold and other microbial respiratory infections, targeting SARS-CoV-2 Mpro. Four natural products namely, Echinacoside, Quercetagetin 7-glucoside, Levan N, Inulin from chicory, and 1,3-Dicaffeoylquinic acid, revealed significant docking energy (>-10 kcal/mol) in the SARS-CoV-2 Mpro catalytic pocket via substantial intermolecular contacts formation against co-crystallized ligand (<-4 kcal/mol). Furthermore, the docked poses of SARS-CoV-2 Mpro with selected natural products showed conformational stability through molecular dynamics. Exploring the end-point net binding energy exhibited substantial contribution of Coulomb and van der Waals interactions to the stability of respective docked conformations. These results advocated the natural products from Echinacea angustifolia for further experimental studies with an elevated probability to discover the potent SARS-CoV-2 Mpro antagonist with higher affinity and drug-likeness.


Assuntos
Antivirais/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Echinacea/química , Inibidores de Proteases/química , Sítios de Ligação , Descoberta de Drogas , Flavonas/química , Frutanos/química , Glicosídeos/química , Inulina/química , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/química , Ligação Proteica , Ácido Quínico/análogos & derivados , Ácido Quínico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...