Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nanoscale ; 10(35): 16683-16691, 2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30155539

RESUMO

While 2D layers of WS2 have been extensively studied, there are very few investigations of WS2 nanotubes. These have usually been grown via a 2-step process involving a WO3-x intermediate. We report a simple process for the synthesis of WS2 nanotubes via the sulfurization of tungsten films under appropriate conditions and present details of their structural and optical properties that help elucidate the formation mechanism. Electron-beam evaporated films of tungsten are sulfurized under flowing N2 gas at 950-1000 °C temperature under atmospheric pressure to obtain WS2 nanotubes. High-resolution scanning and transmission electron microscopy studies show that 2D WS2 flakes curl up and wrap around themselves to form nanotubes. Interlayer spacings in both 'a' and 'c' directions are slightly smaller than the corresponding values in bulk and thin film WS2. Micro-photoluminescence and micro-transmission studies show a resonance that seems intrinsic to the WS2 nanotubes since it cannot be related to the known optical characteristics of WS2 flakes.

3.
Sci Rep ; 6: 36294, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27808122

RESUMO

We report the optimized synthesis and electrochemical characterization of a composite of few-layered nanostructured MoS2 along with an electroactive metal oxide BiVO4. In comparison to pristine BiVO4, and a composite of graphene/BiVO4, the MoS2/BiVO4 nanocomposite provides impressive values of charge storage with longer discharge times and improved cycling stability. Specific capacitance values of 610 Fg-1 (170 mAhg-1) at 1 Ag-1 and 166 Fg-1 (46 mAhg-1) at 10 Ag-1 were obtained for just 2.5 wt% MoS2 loaded BiVO4. The results suggest that the explicitly synthesized small lateral-dimensioned MoS2 particles provide a notable capacitive component that helps augment the specific capacitance. We discuss the optimized synthesis of monoclinic BiVO4, and few-layered nanostructured MoS2. We report the discharge capacities and cycling performance of the MoS2/BiVO4 nanocomposite using an aqueous electrolyte. The data obtained shows the MoS2/BiVO4 nanocomposite to be a promising candidate for supercapacitor energy storage applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...