Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 101: 117638, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38394996

RESUMO

As a result of our continued efforts to pursue Gal-3 inhibitors that could be used to fully evaluate the potential of Gal-3 as a therapeutic target, two novel series of benzothiazole derived monosaccharides as potent (against both human and mouse Gal-3) and orally bioavailable Gal-3 inhibitors, represented by 4 and 5, respectively, were identified. These discoveries were made based on proposals that the benzothiazole sulfur atom could interact with the carbonyl oxygen of G182/G196 in h/mGal-3, and that the anomeric triazole moiety could be modified into an N-methyl carboxamide functionality. The interaction between the benzothiazole sulfur and the carbonyl oxygen of G196 in mGal-3 was confirmed by an X-ray co-crystal structure of early lead 9, providing a rare example of using a S···O binding interaction for drug design. It was found that for both the series, methylation of 3-OH in the monosaccharides caused no loss in h & mGal-3 potencies but significantly improved permeability of the molecules.


Assuntos
Galectina 3 , Monossacarídeos , Animais , Humanos , Camundongos , Benzotiazóis/química , Benzotiazóis/farmacologia , Desenho de Fármacos , Galectina 3/antagonistas & inibidores , Galectinas/antagonistas & inibidores , Monossacarídeos/química , Monossacarídeos/farmacologia , Oxigênio , Enxofre
2.
Pharm Res ; 40(11): 2567-2584, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37523014

RESUMO

PURPOSE: The differences between intestinal and systemic (hepatic and renal) P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) roles in drug disposition are difficult to define. Accordingly, we characterized Encequidar (ECD) as an intestinal P-gp and BCRP specific inhibitor to evaluate their role in drug disposition. METHODS: We assessed the in vitro and in vivo inhibition potential of ECD towards human and animal P-gp and BCRP. RESULTS: ECD is a potent inhibitor with a high degree of selectivity in inhibiting human P-gp (hP-gp) over human BCRP (hBCRP) (IC50s of 0.0058 ± 0.0006 vs. > 10 µM, respectively). In contrast, ECD is a potent inhibitor of rat and cynomolgus monkey BCRP (IC50 ranged from 0.059 to 0.18 µM). While the AUC of IV paclitaxel (PTX) was significantly increased by elacridar (ELD) (P < 0.05) but not ECD in rats (15 mg/kg; PO) (2.55- vs. 0.93-fold), that of PO PTX was significantly elevated to a similar extent between the inhibitors (39.5- vs. 33.5-fold). Similarly, the AUC of PO sulfasalazine (SFZ) was dramatically increased by ELD and ECD (16.6- vs. 3.04-fold) although that of IV SFZ was not significantly affected by ELD and ECD in rats (1.18- vs. 1.06-fold). Finally, a comparable ECD-induced increase of the AUC of PO talinolol in cynomolgus monkeys was observed compared with ELD (2.14- vs. 2.12-fold). CONCLUSIONS: ECD may allow an in-depth appraisal of the role of intestinal efflux transporter(s) in drug disposition in animals and humans through local intestinal drug interactions.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias , Humanos , Ratos , Animais , Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Macaca fascicularis/metabolismo , Proteínas de Neoplasias/metabolismo , Paclitaxel , Interações Medicamentosas
3.
Indian J Ophthalmol ; 71(6): 2500-2503, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37322670

RESUMO

Purpose: Glaucoma is the second leading cause of blindness worldwide, affecting more than 64 million people aged 40-80. The best way to manage primary open-angle glaucoma (POAG) is by lowering the intraocular pressure (IOP). Netarsudil is a Rho kinase inhibitor, the only class of antiglaucoma medications that reorganizes the extracellular matrix to improve the aqueous outflow through the trabecular pathway. Methods: An open-label, real-world, multicentric, observation-based 3-month study was performed for assessing the safety and ocular hypotensive efficacy of netarsudil ophthalmic solution (0.02% w/v) in patients with elevated IOP. Patients were given netarsudil ophthalmic solution (0.02% w/v) as a first-line therapy. Diurnal IOP measurements, best-corrected visual acuity, and adverse event assessments were recorded at each of the five visits (Day-1: screening day and first dosing day; subsequent observations were taken at 2 weeks, 4 weeks, 6 weeks, and 3 months). Results: Four hundred and sixty-nine patients from 39 centers throughout India completed the study. The mean IOP at baseline of the affected eyes was 24.84 ± 6.39 mmHg (mean ± standard deviation). After the first dose, the IOP was measured after 2, 4, and 6 weeks, with the final measurement taken at 3 months. The percentage reduction in IOP in glaucoma patients after 3 months of once-daily netarsudil 0.02% w/v solution use was 33.34%. The adverse effects experienced by patients were not severe in the majority of cases. Some adverse effects observed were redness, irritation, itching, and others, but only a small number of patients experienced severe reactions, as reported in a decreasing order: redness > irritation > watering > itching > stinging > blurring. Conclusion: We found that netarsudil 0.02% w/v solution monotherapy when used as the first-line treatment in primary open-angle glaucoma and ocular hypertension was both safe and effective.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Glaucoma de Ângulo Aberto , Glaucoma , Hipertensão Ocular , Humanos , Soluções Oftálmicas , Hipertensão Ocular/diagnóstico , Glaucoma/tratamento farmacológico , Pressão Intraocular , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/tratamento farmacológico , Anti-Hipertensivos/uso terapêutico , Resultado do Tratamento
4.
J Med Chem ; 66(11): 7534-7552, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37235865

RESUMO

Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that serves as an important regulator of a broad range of cellular functions. It has been linked to Alzheimer's disease as well as various other diseases, including mood disorders, type 2 diabetes, and cancer. There is considerable evidence indicating that GSK-3ß in the central nervous system plays a role in the production of abnormal, hyperphosphorylated, microtubule-associated tau protein found in neurofibrillary tangles associated with Alzheimer's disease. A series of analogues containing a pyrimidine-based hinge-binding heterocycle was synthesized and evaluated, leading to the identification of highly potent GSK-3 inhibitors with excellent kinase selectivity. Further evaluation of 34 and 40 in vivo demonstrated that these compounds are orally bioavailable, brain-penetrant GSK-3 inhibitors that lowered levels of phosphorylated tau in a triple-transgenic mouse Alzheimer's disease model.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos Transgênicos , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Fosforilação
5.
J Med Chem ; 66(6): 4231-4252, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36950863

RESUMO

Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that regulates numerous cellular processes, including metabolism, proliferation, and cell survival. Due to its multifaceted role, GSK-3 has been implicated in a variety of diseases, including Alzheimer's disease, type 2 diabetes, cancer, and mood disorders. GSK-3ß has been linked to the formation of the neurofibrillary tangles associated with Alzheimer's disease that arise from the hyperphosphorylation of tau protein. The design and synthesis of a series of imidazo[1,2-b]pyridazine derivatives that were evaluated as GSK-3ß inhibitors are described herein. Structure-activity relationship studies led to the identification of potent GSK-3ß inhibitors. In vivo studies with 47 in a triple-transgenic mouse Alzheimer's disease model showed that this compound is a brain-penetrant, orally bioavailable GSK-3ß inhibitor that significantly lowered levels of phosphorylated tau.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Camundongos , Animais , Doença de Alzheimer/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas tau/metabolismo , Camundongos Transgênicos , Encéfalo/metabolismo , Relação Estrutura-Atividade , Fosforilação
6.
J Med Chem ; 65(16): 11084-11099, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35969688

RESUMO

Galectin-3 (Gal-3), a member of the ß-galactoside-binding protein family, is implicated in a wide variety of human diseases. Identification of Gal-3 inhibitors with the right combination of potency (against both human and mouse Gal-3) and pharmacokinetic properties to fully evaluate the potential of Gal-3 for therapeutic intervention has been a major challenge due to the characteristics of its binding pocket: high hydrophilicity and key structural differences between human Gal-3 and the mouse ortholog. We report the discovery of a novel series of monosaccharide-based, highly potent, and orally bioavailable inhibitors of human and mouse Gal-3. The novel monosaccharide derivatives proved to be selective for Gal-3, the only member of the chimeric type of galectins, over Gal-1 and Gal-9, representative of the prototype and tandem-repeat type of galectins, respectively. The proposed binding mode for the newly identified ligands was confirmed by an X-ray cocrystal structure of a representative analogue bound to Gal-3 protein.


Assuntos
Galectina 3 , Monossacarídeos , Animais , Galectina 3/metabolismo , Galectinas , Humanos , Ligantes , Camundongos
7.
J Med Chem ; 64(10): 6634-6655, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33988358

RESUMO

Galectin-3 is a member of a family of ß-galactoside-binding proteins. A substantial body of literature reports that galectin-3 plays important roles in cancer, inflammation, and fibrosis. Small-molecule galectin-3 inhibitors, which are generally lactose or galactose-based derivatives, have the potential to be valuable disease-modifying agents. In our efforts to identify novel galectin-3 disaccharide mimics to improve drug-like properties, we found that one of the monosaccharide subunits can be replaced with a suitably functionalized tetrahydropyran ring. Optimization of the structure-activity relationships around the tetrahydropyran-based scaffold led to the discovery of potent galectin-3 inhibitors. Compounds 36, 40, and 45 were selected for further in vivo evaluation. The synthesis, structure-activity relationships, and in vivo evaluation of novel tetrahydropyran-based galectin-3 inhibitors are described.


Assuntos
Dissacarídeos/química , Galectina 3/antagonistas & inibidores , Piranos/química , Animais , Sítios de Ligação , Quimiotaxia/efeitos dos fármacos , Cristalografia por Raios X , Dissacarídeos/síntese química , Dissacarídeos/metabolismo , Dissacarídeos/farmacologia , Galectina 3/metabolismo , Meia-Vida , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Conformação Molecular , Simulação de Dinâmica Molecular , Permeabilidade/efeitos dos fármacos , Ligação Proteica , Relação Estrutura-Atividade , Triazóis/química
8.
Bioanalysis ; 8(4): 297-309, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26847656

RESUMO

BACKGROUND: We have demonstrated the use of a single-point calibration approach, derived from in vitro metabolite identification studies utilizing radiolabeled imipramine, that allows for the quantitation of metabolites from in vivo studies in the absence of metabolite synthetic standards. RESULTS: From the in vivo study of imipramine in rats, the concentration of parent and metabolites were determined using the single-point calibration approach. Sixty seven percent of the dosed imipramine was recovered within 24 h, with 95 and 5% of drug-related material detected in feces and urine, respectively. CONCLUSION: Using a novel single-point calibration approach from radiolabeled in vitro studies, we quantified metabolites in vivo and determined various disposition pathways.


Assuntos
Cromatografia Líquida/métodos , Imipramina/metabolismo , Espectrometria de Massas/métodos , Animais , Calibragem , Cromatografia Líquida/normas , Marcação por Isótopo , Masculino , Espectrometria de Massas/normas , Microssomos Hepáticos/metabolismo , Ratos , Ratos Sprague-Dawley , Segurança
9.
J Nanosci Nanotechnol ; 15(6): 4090-3, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26369016

RESUMO

The present study evaluates role of pullulan as hepatic targeting agent. Nanoparticles of silymarin (SIM) a hepatoprotective drug were prepared using polyethylene sebacate (PES) as biodegradable polymer and surface modified with pullulan. PES-SIM nanoparticles (PES-SIM NP) and PES-SIM nanoparticles surface modified with pullulan (PES-SIM-PUL) were prepared by nanoprecipitation. Nanoparticles were evaluated for hepatoprotective activity in a model of carbon-tetrachloride (CCl4) induced hepatotoxicity in rats. Pretreatment of rats with PES-SIM-NP and PES-SIM-PUL revealed reduced levels of SGOT, SGPT and ALKP compared to CCl4 treated group (p < 0.01) whereas levels of LPO and catalase were comparable to vehicle control suggesting enhanced hepatoprotection with nanoparticles. Histopathological evaluation of liver tissues also revealed better hepatoprotection with nanoparticles. Further significant decrease (p < 0.01) in levels of SGOT, SGPT and ALKP with difference PES-SIM-PUL than PES-SIM NP confirms the role of pullulan as hepatic targeting agent.


Assuntos
Fígado/efeitos dos fármacos , Nanopartículas/química , Poliésteres/química , Substâncias Protetoras/química , Silimarina/química , Animais , Doença Hepática Induzida por Substâncias e Drogas , Feminino , Fígado/patologia , Nanopartículas/administração & dosagem , Tamanho da Partícula , Poliésteres/administração & dosagem , Poliésteres/farmacologia , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/farmacologia , Ratos , Ratos Sprague-Dawley , Silimarina/administração & dosagem , Silimarina/farmacologia
10.
Eur J Pharm Sci ; 76: 173-80, 2015 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-25960252

RESUMO

Weakly basic compounds which have pH dependent solubility are liable to exhibit pH dependent absorption. In some cases, a subtle change in gastric pH can significantly modulate the plasma concentration of the drug and can lead to sub-therapeutic exposure of the drug. Evaluating the risk of pH dependent absorption and potential drug-drug interaction with pH modulators are important aspects of drug discovery and development. In order to assess the risk around the extent of decrease in the systemic exposure of drugs co-administered with pH modulators in the clinic, a pH effect study is carried out, typically in higher species, mostly dog. The major limitation of a higher species pH effect study is the resource and material requirement to assess this risk. Hence, these studies are mostly restricted to promising or advanced leads. In our current work, we have used in vitro aqueous solubility, in silico simulations using GastroPlus™ and an in vivo rat pH effect model to provide a qualitative assessment of the pH dependent absorption liability. Here, we evaluate ketoconazole and atazanavir with different pH dependent solubility profiles and based on in vitro, in silico and in vivo results, a different extent of gastric pH effect on absorption is predicted. The prediction is in alignment with higher species and human pH effect study results. This in vitro, in silico and in vivo (IVISIV) correlation is then extended to assess pH absorption mitigation strategy. The IVISIV predicts pH dependent absorption for BMS-582949 whereas its solubility enhancing prodrug, BMS-751324 is predicted to mitigate this liability. Overall, the material requirement for this assessment is substantially low which makes this approach more practical to screen multiple compounds during lead optimization.


Assuntos
Sulfato de Atazanavir/farmacocinética , Simulação por Computador , Descoberta de Drogas/métodos , Absorção Gástrica , Mucosa Gástrica/metabolismo , Cetoconazol/farmacocinética , Modelos Biológicos , Administração Oral , Animais , Sulfato de Atazanavir/administração & dosagem , Sulfato de Atazanavir/química , Química Farmacêutica , Ácido Gástrico/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cetoconazol/administração & dosagem , Cetoconazol/química , Masculino , Ratos Wistar , Solubilidade , Especificidade da Espécie
11.
Drug Metab Lett ; 8(2): 109-18, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25429513

RESUMO

The study presented here identified and utilized a panel of solubility enhancing excipients to enable the generation of flux data in the Human colon carcinoma (Caco-2) system for compounds with poor solubility. Solubility enhancing excipients Dimethyl acetamide (DMA) 1 % v/v, polyethylene glycol (PEG) 400 1% v/v, povidone 1% w/v, poloxamer 188 2.5% w/v and bovine serum albumin (BSA) 4% w/v did not compromise Caco-2 monolayer integrity as assessed by trans-epithelial resistance measurement (TEER) and Lucifer yellow (LY) permeation. Further, these excipients did not affect P-glycoprotein (P-gp) mediated bidirectional transport of digoxin, permeabilities of high (propranolol) or low permeability (atenolol) compounds, and were found to be inert to Breast cancer resistant protein (BCRP) mediated transport of cladribine. This approach was validated further using poorly soluble tool compounds, atazanavir (poloxamer 188 2.5% w/v) and cyclosporine A (BSA 4% w/v) and also applied to new chemical entity (NCE) BMS-A in BSA 4% w/v, for which Caco-2 data could not be generated using the traditional methodology due to poor solubility (<1 µM) in conventional Hanks balanced salt solution (HBSS). Poloxamer 188 2.5% w/v increased solubility of atazanavir by >8 fold whereas BSA 4% w/v increased the solubility of cyclosporine A and BMS-A by >2-4 fold thereby enabling permeability as well as efflux liability estimation in the Caco-2 model with reasonable recovery values. To conclude, addition of excipients such as poloxamer 188 2.5% w/v and BSA 4% w/v to HBSS leads to a significant improvement in the solubility of the poorly soluble compounds resulting in enhanced recoveries without modulating transporter-mediated efflux, expanding the applicability of Caco-2 assays to poorly soluble compounds.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Excipientes/farmacologia , Proteínas de Neoplasias/metabolismo , Preparações Farmacêuticas/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Humanos , Isoquinolinas/metabolismo , Permeabilidade , Preparações Farmacêuticas/química , Solubilidade
12.
J Surg Res ; 184(2): 766-73, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23582230

RESUMO

BACKGROUND: Phasix mesh is a fully resorbable implant for soft tissue reconstruction made from knitted poly-4-hydroxybutyrate monofilament fibers. The objectives of this study were to characterize the in vitro and in vivo mechanical and resorption properties of Phasix mesh over time, and to assess the functional performance in a porcine model of abdominal hernia repair. MATERIALS AND METHODS: We evaluated accelerated in vitro degradation of Phasix mesh in 3 mol/L HCl through 120 h incubation. We also evaluated functional performance after repair of a surgically created abdominal hernia defect in a porcine model through 72 wk. Mechanical and molecular weight (MW) properties were fully characterized in both studies over time. RESULTS: Phasix mesh demonstrated a significant reduction in mechanical strength and MW over 120 h in the accelerated degradation in vitro test. In vivo, the Phasix mesh repair demonstrated 80%, 65%, 58%, 37%, and 18% greater strength, compared with native abdominal wall at 8, 16, 32, and 48 wk post-implantation, respectively, and comparable repair strength at 72 wk post-implantation despite a significant reduction in mesh MW over time. CONCLUSIONS: Both in vitro and in vivo data suggest that Phasix mesh provides a durable scaffold for mechanical reinforcement of soft tissue. Furthermore, a Phasix mesh surgical defect repair in a large animal model demonstrated successful transfer of load bearing from the mesh to the repaired abdominal wall, thereby successfully returning the mechanical properties of repaired host tissue to its native state over an extended time period.


Assuntos
Hérnia Abdominal/cirurgia , Herniorrafia/instrumentação , Hidroxibutiratos , Telas Cirúrgicas/normas , Animais , Modelos Animais de Doenças , Herniorrafia/métodos , Técnicas In Vitro , Masculino , Teste de Materiais , Peso Molecular , Estresse Mecânico , Suínos
13.
BMC Microbiol ; 6: 53, 2006 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-16768798

RESUMO

BACKGROUND: Bacterial populations contain persisters, phenotypic variants that constitute approximately 1% of cells in stationary phase and biofilm cultures. Multidrug tolerance of persisters is largely responsible for the inability of antibiotics to completely eradicate infections. Recent progress in understanding persisters is encouraging, but the main obstacle in understanding their nature was our inability to isolate these elusive cells from a wild-type population since their discovery in 1944. RESULTS: We hypothesized that persisters are dormant cells with a low level of translation, and used this to physically sort dim E. coli cells which do not contain sufficient amounts of unstable GFP expressed from a promoter whose activity depends on the growth rate. The dim cells were tolerant to antibiotics and exhibited a gene expression profile distinctly different from those observed for cells in exponential or stationary phases. Genes coding for toxin-antitoxin module proteins were expressed in persisters and are likely contributors to this condition. CONCLUSION: We report a method for persister isolation and conclude that these cells represent a distinct state of bacterial physiology.


Assuntos
Farmacorresistência Bacteriana Múltipla , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Citometria de Fluxo/métodos , Regulação Bacteriana da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Antibacterianos/farmacologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Contagem de Colônia Microbiana , Tolerância a Medicamentos , Escherichia coli/citologia , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/genética , Genoma Bacteriano , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Regiões Promotoras Genéticas
14.
J Bacteriol ; 186(24): 8172-80, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15576765

RESUMO

Bacterial populations produce persisters, cells that neither grow nor die in the presence of bactericidal agents, and thus exhibit multidrug tolerance (MDT). The mechanisms of MDT and the nature of persisters have remained elusive. Our previous research has shown that persisters are largely responsible for the recalcitrance of biofilm infections. A general method for isolating persisters was developed, based on lysis of regular cells by ampicillin. A gene expression profile of persisters contained toxin-antitoxin (TA) modules and other genes that can block important cellular functions such as translation. Bactericidal antibiotics kill cells by corrupting the target function (for example, aminoglycosides interrupt translation, producing toxic peptides). We reasoned that inhibition of translation will lead to a shutdown of cellular functions, preventing antibiotics from corrupting their targets, giving rise to MDT persister cells. Overproduction of the RelE toxin, an inhibitor of translation, caused a sharp increase in persisters. Functional expression of a putative HipA toxin also increased persisters, while deletion of the hipBA module caused a sharp decrease in persisters in both stationary and biofilm populations. HipA is thus the first validated persister-MDT gene. We suggest that random fluctuation in the levels of MDT proteins leads to the formation of rare persister cells. The function of these specialized dormant cells is to ensure the survival of the population in the presence of lethal factors.


Assuntos
Antibacterianos/farmacologia , Tolerância a Medicamentos/genética , Proteínas de Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Meios de Cultura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Testes de Sensibilidade Microbiana , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...