Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(9): e75395, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24058683

RESUMO

The lactonase enzyme (AiiA) produced by Bacillus thuringiensis serves to degrade autoinducer-1 (AI-1) signaling molecules in what is an evolved mechanism by which to compete with other bacteria. Bioassays have been previously performed to determine whether the AI-1 aliphatic tail lengths have any effect on AiiA's bioactivity, however, data to date are conflicting. Additionally, specific residue contributions to the catalytic activity of AiiA provide for some interesting questions. For example, it has been proposed that Y194 serves to provide an oxyanion hole to AI-1 which is curious given the fact the substrate spans two Zn(2+) ions. These ions might conceivably provide enough charge to promote both ligand stability and the carbonyl activation necessary to drive a nucleophilic attack. To investigate these questions, multiple molecular dynamics simulations were performed across a family of seven acylated homoserine lactones (AHL) along with their associated intermediate and product states. Distance analyses and interaction energy analyses were performed to investigate current bioassay data. Our simulations are consistent with experimental studies showing that AiiA degrades AHLs in a tail length independent manner. However, the presence of the tail is required for activity. Also, the putative oxyanion hole function of Y194 toward the substrate is not observed in any of the reactant or product state simulation trajectories, but does seem to show efficacy in stabilizing the intermediate state. Last, we argue through ionization state analyses, that the proton shuttling necessary for catalytic activity might be mediated by both water and substrate-based intra-molecular proton transfer. Based on this argument, an alternate catalytic mechanism is proposed.


Assuntos
Bacillus thuringiensis/enzimologia , Proteínas de Bactérias/química , Metaloendopeptidases/química , Simulação de Dinâmica Molecular , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Domínio Catalítico , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...