Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Chem Res Toxicol ; 37(6): 878-893, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38736322

RESUMO

Adaptive stress response pathways (SRPs) restore cellular homeostasis following perturbation but may activate terminal outcomes like apoptosis, autophagy, or cellular senescence if disruption exceeds critical thresholds. Because SRPs hold the key to vital cellular tipping points, they are targeted for therapeutic interventions and assessed as biomarkers of toxicity. Hence, we are developing a public database of chemicals that perturb SRPs to enable new data-driven tools to improve public health. Here, we report on the automated text-mining pipeline we used to build and curate the first version of this database. We started with 100 reference SRP chemicals gathered from published biomarker studies to bootstrap the database. Second, we used information retrieval to find co-occurrences of reference chemicals with SRP terms in PubMed abstracts and determined pairwise mutual information thresholds to filter biologically relevant relationships. Third, we applied these thresholds to find 1206 putative SRP perturbagens within thousands of substances in the Library of Integrated Network-Based Cellular Signatures (LINCS). To assign SRP activity to LINCS chemicals, domain experts had to manually review at least three publications for each of 1206 chemicals out of 181,805 total abstracts. To accomplish this efficiently, we implemented a machine learning approach to predict SRP classifications from texts to prioritize abstracts. In 5-fold cross-validation testing with a corpus derived from the 100 reference chemicals, artificial neural networks performed the best (F1-macro = 0.678) and prioritized 2479/181,805 abstracts for expert review, which resulted in 457 chemicals annotated with SRP activities. An independent analysis of enriched mechanisms of action and chemical use class supported the text-mined chemical associations (p < 0.05): heat shock inducers were linked with HSP90 and DNA damage inducers to topoisomerase inhibition. This database will enable novel applications of LINCS data to evaluate SRP activities and to further develop tools for biomedical information extraction from the literature.


Assuntos
Mineração de Dados , Humanos , Estresse Fisiológico/efeitos dos fármacos , Bases de Dados Factuais
2.
Chem Res Toxicol ; 37(5): 685-697, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38598715

RESUMO

Xenobiotic metabolism is a key consideration in evaluating the hazards and risks posed by environmental chemicals. A number of software tools exist that are capable of simulating metabolites, but each reports its predictions in a different format and with varying levels of detail. This makes comparing the performance and coverage of the tools a practical challenge. To address this shortcoming, we developed a metabolic simulation framework called MetSim, which comprises three main components. A graph-based schema was developed to allow metabolism information to be harmonized. The schema was implemented in MongoDB to store and retrieve metabolic graphs for subsequent analysis. MetSim currently includes an application programming interface for four metabolic simulators: BioTransformer, the OECD Toolbox, EPA's chemical transformation simulator (CTS), and tissue metabolism simulator (TIMES). Lastly, MetSim provides functions to help evaluate simulator performance for specific data sets. In this study, a set of 112 drugs with 432 reported metabolites were compiled, and predictions were made using the 4 simulators. Fifty-nine of the 112 drugs were taken from the Small Molecule Pathway Database, with the remainder sourced from the literature. The human models within BioTransformer and CTS (Phase I only) and the rat models within TIMES and the OECD Toolbox (Phase I only) were used to make predictions for the chemicals in the data set. The recall and precision (recall, precision) ranked in order of highest recall for each individual tool were CTS (0.54, 0.017), BioTransformer (0.50, 0.008), Toolbox in vitro (0.40, 0.144), TIMES in vivo (0.40, 0.133), Toolbox in vivo (0.40, 0.118), and TIMES in vitro (0.39, 0.128). Combining all of the model predictions together increased the overall recall (0.73, 0.008). MetSim enabled insights into the performance and coverage of in silico metabolic simulators to be more efficiently derived, which in turn should aid future efforts to evaluate other data sets.


Assuntos
Simulação por Computador , Software , Xenobióticos , Xenobióticos/metabolismo , Humanos , Animais
3.
Chem Res Toxicol ; 37(4): 600-619, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38498310

RESUMO

Regulatory authorities aim to organize substances into groups to facilitate prioritization within hazard and risk assessment processes. Often, such chemical groupings are not explicitly defined by structural rules or physicochemical property information. This is largely due to how these groupings are developed, namely, a manual expert curation process, which in turn makes updating and refining groupings, as new substances are evaluated, a practical challenge. Herein, machine learning methods were leveraged to build models that could preliminarily assign substances to predefined groups. A set of 86 groupings containing 2,184 substances as published on the European Chemicals Agency (ECHA) website were mapped to the U.S. Environmental Protection Agency (EPA) Distributed Toxicity Structure Database (DSSTox) content to extract chemical and structural information. Substances were represented using Morgan fingerprints, and two machine learning approaches were used to classify test substances into 56 groups containing at least 10 substances with a structural representation in the data set: k-nearest neighbor (kNN) and random forest (RF), that led to mean 5-fold cross-validation test accuracies (average F1 scores) of 0.781 and 0.853, respectively. With a 9% improvement, the RF classifier was significantly more accurate than KNN (p-value = 0.001). The approach offers promise as a means of the initial profiling of new substances into predefined groups to facilitate prioritization efforts and streamline the assessment of new substances when earlier groupings are available. The algorithm to fit and use these models has been made available in the accompanying repository, thereby enabling both use of the produced models and refitting of these models, as new groupings become available by regulatory authorities or industry.


Assuntos
Algoritmos , Aprendizado de Máquina , Estados Unidos , United States Environmental Protection Agency , Bases de Dados Factuais
4.
Brain Spine ; 4: 102763, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510627

RESUMO

Introduction: Sport-related concussions (SRC) have been a concern in all sports, including soccer. The long-term effects of soccer-related head injuries are a public health concern. The Concussion in Sport Group (CISG) released a consensus statement in 2017 and several soccer governing associations have published their own SRC guidelines while referring to it but it is unclear whether this has been universally adopted. Research question: We aimed to investigate whether guidelines published by soccer associations have any discrepancies; and the extent to which they follow the CISG recommendations. Materials and methods: A scoping review of available soccer-specific SRC guidelines was performed via databases PubMed, Google Scholar, and official soccer association websites via web browser Google. The inclusion criteria were soccer-specific SRC guidelines. Comparisons between guidelines were made concerning the following index items: initial (on-site) assessment, removal from play, re-evaluation with neuroimaging, return-to-sport protocol, special populations, and education. Results: Nine soccer associations with available guidelines were included in this review. Guidelines obtained were from official associations in the United Kingdom, United States of America, Canada, Australia, and New Zealand. When compared to each other and the CISG recommendations, discrepancies were found within guidelines regarding the index items. Additionally, major soccer associations in some countries famous for soccer were found to have not published any publicly available guidelines. Discussion and conclusion: SRC guidelines from different soccer associations contain discrepancies which may be detrimental to athletes, both short and long-term. We recommend that all major soccer governing associations publish guidelines that are standardised and accessible to all athletes.

5.
J Pak Med Assoc ; 74(1): 114-117, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38219176

RESUMO

The aim of this study was to investigate the effectiveness of continuous cold flow and compression device as against traditional icing regimen and without icing after anterior cruciate ligament (ACL) reconstruction. All patients undergoing ACL reconstruction from June 2021 to August 2021 were enrolled in this study. Patients were randomly allocated to three groups: A control group (n=10) with no ice regimen post-operatively, a second control group (n=10) with ice bag, and a third group (n=10) with continuous cold flow and compression device (physiolab). All patients who had isolated ACL tear evident on magnetic resonance imaging were included. Pain intensity, limb girth, Oxford Knee Score, and 12-item survey form were measured pre- and post-operatively. Significant difference was noted between pain scores in all groups at two- and six-week follow-ups with p-value of 0.004 and 0.01. The test for "between subject effects" showed significant difference (p=0.007) in limb girth between the two groups. Cold and compression device can be used to reduce swelling immediately after ACL reconstruction.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Humanos , Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/cirurgia , Projetos Piloto , Resultado do Tratamento , Reconstrução do Ligamento Cruzado Anterior/métodos , Articulação do Joelho
6.
Toxicology ; 501: 153694, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043774

RESUMO

Multiple new approach methods (NAMs) are being developed to rapidly screen large numbers of chemicals to aid in hazard evaluation and risk assessments. High-throughput transcriptomics (HTTr) in human cell lines has been proposed as a first-tier screening approach for determining the types of bioactivity a chemical can cause (activation of specific targets vs. generalized cell stress) and for calculating transcriptional points of departure (tPODs) based on changes in gene expression. In the present study, we examine a range of computational methods to calculate tPODs from HTTr data, using six data sets in which MCF7 cells cultured in two different media formulations were treated with a panel of 44 chemicals for 3 different exposure durations (6, 12, 24 hr). The tPOD calculation methods use data at the level of individual genes and gene set signatures, and compare data processed using the ToxCast Pipeline 2 (tcplfit2), BMDExpress and PLIER (Pathway Level Information ExtractoR). Methods were evaluated by comparing to in vitro PODs from a validated set of high-throughput screening (HTS) assays for a set of estrogenic compounds. Key findings include: (1) for a given chemical and set of experimental conditions, tPODs calculated by different methods can vary by several orders of magnitude; (2) tPODs are at least as sensitive to computational methods as to experimental conditions; (3) in comparison to an external reference set of PODs, some methods give generally higher values, principally PLIER and BMDExpress; and (4) the tPODs from HTTr in this one cell type are mostly higher than the overall PODs from a broad battery of targeted in vitro ToxCast assays, reflecting the need to test chemicals in multiple cell types and readout technologies for in vitro hazard screening.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Humanos , Ensaios de Triagem em Larga Escala/métodos , Estrogênios , Linhagem Celular , Medição de Risco/métodos
7.
Ann Biomed Eng ; 52(2): 208-225, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37962675

RESUMO

Computational modeling can be a critical tool to predict deployment behavior for transcatheter aortic valve replacement (TAVR) in patients with aortic stenosis. However, due to the mechanical complexity of the aortic valve and the multiphysics nature of the problem, described by partial differential equations (PDEs), traditional finite element (FE) modeling of TAVR deployment is computationally expensive. In this preliminary study, a PDEs-based reduced order modeling (ROM) framework is introduced for rapidly simulating structural deformation of the Medtronic Evolut R valve stent frame. Using fifteen probing points from an Evolut model with parametrized loads enforced, 105 FE simulations were performed in the so-called offline phase, creating a snapshot library. The library was used in the online phase of the ROM for a new set of applied loads via the proper orthogonal decomposition-Galerkin (POD-Galerkin) approach. Simulations of small radial deformations of the Evolut stent frame were performed and compared to full order model (FOM) solutions. Linear elastic and hyperelastic constitutive models in steady and unsteady regimes were implemented within the ROM. Since the original POD-Galerkin method is formulated for linear problems, specific methods for the nonlinear terms in the hyperelastic case were employed, namely, the Discrete Empirical Interpolation Method. The ROM solutions were in strong agreement with the FOM in all numerical experiments, with a speed-up of at least 92% in CPU Time. This framework serves as a first step toward real-time predictive models for TAVR deployment simulations.


Assuntos
Estenose da Valva Aórtica , Dietilestilbestrol/análogos & derivados , Próteses Valvulares Cardíacas , Substituição da Valva Aórtica Transcateter , Humanos , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/cirurgia , Stents , Desenho de Prótese , Resultado do Tratamento
10.
Comput Toxicol ; 25: 1-15, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37693774

RESUMO

Read-across continues to be a popular data gap filling technique within category and analogue approaches. One of the main issues hindering read-across acceptance is the notion of addressing and reducing uncertainties. Frameworks and formats have been created to help facilitate read-across development, evaluation, and residual uncertainties. However, read-across remains an expert-driven approach with each assessment decided on its own merits with no objective means of evaluating performance or quantifying uncertainties. Here, the underlying motivation of creating an algorithmic approach to read-across, namely the Generalised Read-Across (GenRA) approach, is described. The overall objectives of the approach were to quantify performance and uncertainty. Progress made in quantifying the impact of each similarity context commonly relied upon as part of read-across assessment are discussed. The framework underpinning the approach, the software tools developed to date and how GenRA can be used to make and interpret predictions as part of a screening level hazard assessment decision context are illustrated. Future directions and some of the overarching issues still needed in this field and the extent to which GenRA might facilitate those needs are discussed.

12.
Materials (Basel) ; 16(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37445118

RESUMO

Horizontal-axis wind turbines are the most popular wind machines in operation today. These turbines employ aerodynamic blades that may be oriented either upward or downward. HAWTs are the most common non-conventional source of energy generation. These turbine blades fail mostly due to fatigue, as a large centrifugal force acts on them at high rotational speeds. This study aims to increase a turbine's service life by improving the turbine blades' fatigue life. Predicting the fatigue life and the design of the turbine blade considers the maximum wind speed range. SolidWorks, a CAD program, is used to create a wind turbine blade utilizing NACA profile S814. The wind turbine blade's fatigue life is calculated using Morrow's equation. A turbine blade will eventually wear out due to several forces operating on it. Ansys software is used to analyze these stresses using the finite element method. The fatigue study of wind turbine blades is described in this research paper. To increase a turbine blade's fatigue life, this research study focuses on design optimization. Based on the foregoing characteristics, an improved turbine blade design with a longer fatigue life than the original one is intended in this study. The primary fatigue parameters are the length of a chord twist angle and blade length. The experimental data computed with the aid of a fatigue testing machine are also used to validate the numerical results, and it is found that they are very similar to one another. By creating the most effective turbine blades with the longest fatigue life, this research study can be developed further. The most effective turbine blades with the longest fatigue life can be designed to further this research investigation.

13.
Front Toxicol ; 5: 1194895, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288009

RESUMO

The growing number of chemicals in the current consumer and industrial markets presents a major challenge for regulatory programs faced with the need to assess the potential risks they pose to human and ecological health. The increasing demand for hazard and risk assessment of chemicals currently exceeds the capacity to produce the toxicity data necessary for regulatory decision making, and the applied data is commonly generated using traditional approaches with animal models that have limited context in terms of human relevance. This scenario provides the opportunity to implement novel, more efficient strategies for risk assessment purposes. This study aims to increase confidence in the implementation of new approach methods in a risk assessment context by using a parallel analysis to identify data gaps in current experimental designs, reveal the limitations of common approaches deriving transcriptomic points of departure, and demonstrate the strengths in using high-throughput transcriptomics (HTTr) to derive practical endpoints. A uniform workflow was applied across six curated gene expression datasets from concentration-response studies containing 117 diverse chemicals, three cell types, and a range of exposure durations, to determine tPODs based on gene expression profiles. After benchmark concentration modeling, a range of approaches was used to determine consistent and reliable tPODs. High-throughput toxicokinetics were employed to translate in vitro tPODs (µM) to human-relevant administered equivalent doses (AEDs, mg/kg-bw/day). The tPODs from most chemicals had AEDs that were lower (i.e., more conservative) than apical PODs in the US EPA CompTox chemical dashboard, suggesting in vitro tPODs would be protective of potential effects on human health. An assessment of multiple data points for single chemicals revealed that longer exposure duration and varied cell culture systems (e.g., 3D vs. 2D) lead to a decreased tPOD value that indicated increased chemical potency. Seven chemicals were flagged as outliers when comparing the ratio of tPOD to traditional POD, thus indicating they require further assessment to better understand their hazard potential. Our findings build confidence in the use of tPODs but also reveal data gaps that must be addressed prior to their adoption to support risk assessment applications.

14.
Biosensors (Basel) ; 13(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37366954

RESUMO

In 2019, over 21% of an estimated 10 million new tuberculosis (TB) patients were either not diagnosed at all or diagnosed without being reported to public health authorities. It is therefore critical to develop newer and more rapid and effective point-of-care diagnostic tools to combat the global TB epidemic. PCR-based diagnostic methods such as Xpert MTB/RIF are quicker than conventional techniques, but their applicability is restricted by the need for specialized laboratory equipment and the substantial cost of scaling-up in low- and middle-income countries where the burden of TB is high. Meanwhile, loop-mediated isothermal amplification (LAMP) amplifies nucleic acids under isothermal conditions with a high efficiency, helps in the early detection and identification of infectious diseases, and can be performed without the need for sophisticated thermocycling equipment. In the present study, the LAMP assay was integrated with screen-printed carbon electrodes and a commercial potentiostat for real time cyclic voltammetry analysis (named as the LAMP-Electrochemical (EC) assay). The LAMP-EC assay was found to be highly specific to TB-causing bacteria and capable of detecting even a single copy of the Mycobacterium tuberculosis (Mtb) IS6110 DNA sequence. Overall, the LAMP-EC test developed and evaluated in the present study shows promise to become a cost-effective tool for rapid and effective diagnosis of TB.


Assuntos
Técnicas Biossensoriais , Microeletrodos , Tuberculose , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose/diagnóstico , Tuberculose/microbiologia , Técnicas Biossensoriais/economia , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/normas , Carbono/química , Microeletrodos/normas , Sensibilidade e Especificidade , Microscopia Eletrônica de Varredura , Reprodutibilidade dos Testes , DNA Bacteriano/análise
15.
Materials (Basel) ; 16(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37241359

RESUMO

Mild steel welded products are widely used for their excellent ductility. Tungsten inert gas (TIG) welding is a high-quality, pollution-free welding process suitable for a base part thickness greater than 3 mm. Fabricating mild steel products with an optimized welding process, material properties, and parameters is important to achieve better weld quality and minimum stresses/distortion. This study uses the finite element method to analyze the temperature and thermal stress fields during TIG welding for optimum bead geometry. The bead geometry was optimized using grey relational analysis by considering the flow rate, welding current, and gap distance. The welding current was the most influential factor affecting the performance measures, followed by the gas flow rate. The effect of welding parameters, such as welding voltage, efficiency, and speed on the temperature field and thermal stress were also numerically investigated. The maximum temperature and thermal stress induced in the weld part were 2083.63 °C and 424 MPa, respectively, for the given heat flux of 0.62 × 106 W/m2. Results showed that the temperature increases with the voltage and efficiency of the weld joint but decreases with an increase in welding speed.

16.
Toxicol Appl Pharmacol ; 468: 116513, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37044265

RESUMO

'Cell Painting' is an imaging-based high-throughput phenotypic profiling (HTPP) method in which cultured cells are fluorescently labeled to visualize subcellular structures (i.e., nucleus, nucleoli, endoplasmic reticulum, cytoskeleton, Golgi apparatus / plasma membrane and mitochondria) and to quantify morphological changes in response to chemicals or other perturbagens. HTPP is a high-throughput and cost-effective bioactivity screening method that detects effects associated with many different molecular mechanisms in an untargeted manner, enabling rapid in vitro hazard assessment for thousands of chemicals. Here, 1201 chemicals from the ToxCast library were screened in concentration-response up to ∼100 µM in human U-2 OS cells using HTPP. A phenotype altering concentration (PAC) was estimated for chemicals active in the tested range. PACs tended to be higher than lower bound potency values estimated from a broad collection of targeted high-throughput assays, but lower than the threshold for cytotoxicity. In vitro to in vivo extrapolation (IVIVE) was used to estimate administered equivalent doses (AEDs) based on PACs for comparison to human exposure predictions. AEDs for 18/412 chemicals overlapped with predicted human exposures. Phenotypic profile information was also leveraged to identify putative mechanisms of action and group chemicals. Of 58 known nuclear receptor modulators, only glucocorticoids and retinoids produced characteristic profiles; and both receptor types are expressed in U-2 OS cells. Thirteen chemicals with profile similarity to glucocorticoids were tested in a secondary screen and one chemical, pyrene, was confirmed by an orthogonal gene expression assay as a novel putative GR modulating chemical. Most active chemicals demonstrated profiles not associated with a known mechanism-of-action. However, many structurally related chemicals produced similar profiles, with exceptions such as diniconazole, whose profile differed from other active conazoles. Overall, the present study demonstrates how HTPP can be applied in screening-level chemical assessments through a series of examples and brief case studies.


Assuntos
Bioensaio , Ensaios de Triagem em Larga Escala , Humanos , Medição de Risco/métodos , Ensaios de Triagem em Larga Escala/métodos , Células Cultivadas , Bioensaio/métodos
17.
Int J Cardiovasc Imaging ; 39(7): 1375-1382, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37119348

RESUMO

Coronary stent underexpansion is associated with restenosis and stent thrombosis. In clinical studies of atherosclerosis, high wall shear stress (WSS) has been associated with activation of prothrombotic pathways, upregulation of matrix metalloproteinases, and future myocardial infarction. We hypothesized that stent underexpansion is predictive of high WSS. WSS distribution was investigated in patients enrolled in the prospective randomized controlled study of angulated coronary arteries randomized to undergo percutaneous coronary intervention with R-ZES or X-EES. WSS was calculated from 3D reconstructions of arteries from intravascular ultrasound (IVUS) and angiography using computational fluid dynamics. A logistic regression model investigated the relationship between WSS and underexpansion and the relationship between underexpansion and stent platform. Mean age was 63±11, 78% were male, 35% had diabetes, mean pre-stent angulation was 36.7°±14.7°. Underexpansion was assessed in 83 patients (6,181 IVUS frames). Frames with stent underexpansion were significantly more likely to exhibit high WSS (> 2.5 Pa) compared to those without underexpansion with an OR of 2.197 (95% CI = [1.233-3.913], p = 0.008). There was no significant association between underexpansion and low WSS (< 1.0 Pa) and no significant differences in underexpansion between R-ZES and X-EES. In the Shear Stent randomized controlled study, underexpanded IVUS frames were more than twice as likely to be associated with high WSS than frames without underexpansion.


Assuntos
Doença da Artéria Coronariana , Intervenção Coronária Percutânea , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Feminino , Estudos Prospectivos , Valor Preditivo dos Testes , Stents , Vasos Coronários/diagnóstico por imagem , Intervenção Coronária Percutânea/efeitos adversos , Estresse Mecânico , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/terapia
18.
J Biomol Struct Dyn ; 41(24): 14730-14743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36927394

RESUMO

Vibrio cholerae, the etiological agent of cholera, causes dehydration and severe diarrhea with the production of cholera toxin. Due to the acquired antibiotic resistance, V. cholerae has drawn attention to the establishment of novel medications to counteract the virulence and viability of the pathogen. Centella asiatica is a medicinal herb native to Bangladesh that has a wide range of medicinal and ethnobotanical applications including anti-bacterial properties. In the present investigation, a total of 25 bioactive phytochemicals of C. asiatica have been screened virtually through molecular docking, ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) analyses, and molecular dynamics simulation. Our results revealed four lead compounds as Viridiflorol (-8.7 Kcal/mol), Luteolin (-8.1 Kcal/mol), Quercetin (-8.0 Kcal/mol) and, Geranyl acetate (-7.1 Kcal/mol) against V. cholerae Toxin co-regulated pilus virulence regulatory protein (ToxT). All the lead compounds have been found to possess favorable pharmacokinetic, pharmacodynamics, and molecular dynamics properties. Toxicity analysis revealed satisfactory results with no major side effects. Molecular dynamics simulation was performed for 100 ns that revealed noteworthy conformational stability and structural compactness for all the lead compounds, especially for Quercetin. Target class prediction unveiled enzymes in most of the cases and some experimental and investigational drugs were found as structurally similar analogs of the lead compounds. These findings could aid in the development of novel therapeutics targeting Cholera disease and we strongly recommend in vitro trials of our experimental findings.Communicated by Ramaswamy H. Sarma.


Assuntos
Centella , Cólera , Vibrio cholerae , Humanos , Cólera/tratamento farmacológico , Cólera/microbiologia , Simulação de Dinâmica Molecular , Centella/metabolismo , Quercetina/farmacologia , Simulação de Acoplamento Molecular , Proteínas de Bactérias/metabolismo , Toxina da Cólera/metabolismo , Toxina da Cólera/farmacologia
19.
Lancet ; 401(10383): 1183-1193, 2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-36898396

RESUMO

BACKGROUND: Lower respiratory tract infections (LRTIs) in early childhood are known to influence lung development and lifelong lung health, but their link to premature adult death from respiratory disease is unclear. We aimed to estimate the association between early childhood LRTI and the risk and burden of premature adult mortality from respiratory disease. METHODS: This longitudinal observational cohort study used data collected prospectively by the Medical Research Council National Survey of Health and Development in a nationally representative cohort recruited at birth in March, 1946, in England, Scotland, and Wales. We evaluated the association between LRTI during early childhood (age <2 years) and death from respiratory disease from age 26 through 73 years. Early childhood LRTI occurrence was reported by parents or guardians. Cause and date of death were obtained from the National Health Service Central Register. Hazard ratios (HRs) and population attributable risk associated with early childhood LRTI were estimated using competing risks Cox proportional hazards models, adjusted for childhood socioeconomic position, childhood home overcrowding, birthweight, sex, and smoking at age 20-25 years. We compared mortality within the cohort studied with national mortality patterns and estimated corresponding excess deaths occurring nationally during the study period. FINDINGS: 5362 participants were enrolled in March, 1946, and 4032 (75%) continued participating in the study at age 20-25 years. 443 participants with incomplete data on early childhood (368 [9%] of 4032), smoking (57 [1%]), or mortality (18 [<1%]) were excluded. 3589 participants aged 26 years (1840 [51%] male and 1749 [49%] female) were included in the survival analyses from 1972 onwards. The maximum follow-up time was 47·9 years. Among 3589 participants, 913 (25%) who had an LRTI during early childhood were at greater risk of dying from respiratory disease by age 73 years than those with no LRTI during early childhood (HR 1·93, 95% CI 1·10-3·37; p=0·021), after adjustment for childhood socioeconomic position, childhood home overcrowding, birthweight, sex, and adult smoking. This finding corresponded to a population attributable risk of 20·4% (95% CI 3·8-29·8) and 179 188 (95% CI 33 806-261 519) excess deaths across England and Wales between 1972 and 2019. INTERPRETATION: In this prospective, life-spanning, nationally representative cohort study, LRTI during early childhood was associated with almost a two times increased risk of premature adult death from respiratory disease, and accounted for one-fifth of these deaths. FUNDING: National Institute for Health and Care Research Imperial Biomedical Research Centre, Royal Brompton and Harefield National Health Service (NHS) Foundation Trust, Royal Brompton and Harefield Hospitals Charity and Imperial College Healthcare NHS Trust, UK Medical Research Council.


Assuntos
Transtornos Respiratórios , Infecções Respiratórias , Recém-Nascido , Humanos , Masculino , Pré-Escolar , Adulto , Feminino , Adulto Jovem , Estudos de Coortes , Reino Unido/epidemiologia , Estudos Prospectivos , Peso ao Nascer , Medicina Estatal
20.
Front Toxicol ; 5: 1051483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36742129

RESUMO

Understanding the metabolic fate of a xenobiotic substance can help inform its potential health risks and allow for the identification of signature metabolites associated with exposure. The need to characterize metabolites of poorly studied or novel substances has shifted exposure studies towards non-targeted analysis (NTA), which often aims to profile many compounds within a sample using high-resolution liquid-chromatography mass-spectrometry (LCMS). Here we evaluate the suitability of suspect screening analysis (SSA) liquid-chromatography mass-spectrometry to inform xenobiotic chemical metabolism. Given a lack of knowledge of true metabolites for most chemicals, predictive tools were used to generate potential metabolites as suspect screening lists to guide the identification of selected xenobiotic substances and their associated metabolites. Thirty-three substances were selected to represent a diverse array of pharmaceutical, agrochemical, and industrial chemicals from Environmental Protection Agency's ToxCast chemical library. The compounds were incubated in a metabolically-active in vitro assay using primary hepatocytes and the resulting supernatant and lysate fractions were analyzed with high-resolution LCMS. Metabolites were simulated for each compound structure using software and then combined to serve as the suspect screening list. The exact masses of the predicted metabolites were then used to select LCMS features for fragmentation via tandem mass spectrometry (MS/MS). Of the starting chemicals, 12 were measured in at least one sample in either positive or negative ion mode and a subset of these were used to develop the analysis workflow. We implemented a screening level workflow for background subtraction and the incorporation of time-varying kinetics into the identification of likely metabolites. We used haloperidol as a case study to perform an in-depth analysis, which resulted in identifying five known metabolites and five molecular features that represent potential novel metabolites, two of which were assigned discrete structures based on in silico predictions. This workflow was applied to five additional test chemicals, and 15 molecular features were selected as either reported metabolites, predicted metabolites, or potential metabolites without a structural assignment. This study demonstrates that in some-but not all-cases, suspect screening analysis methods provide a means to rapidly identify and characterize metabolites of xenobiotic chemicals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...