Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 23(29): 294004, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22743584

RESUMO

Palladium (Pd) nanoparticle catalysts were successfully synthesized within an aqueous phase using sodium carboxymethyl cellulose (CMC) as a capping ligand which offers a green alternative to conventional nanoparticle synthesis techniques. The CMC-stabilized Pd nanoparticles were subsequently dispersed within support materials using the incipient wetness impregnation technique for utilization in heterogeneous catalyst systems. The unsupported and supported (both calcined and uncalcined) Pd nanoparticle catalysts were characterized using transmission electron microscopy, energy dispersive x-ray spectrometry, x-ray diffraction, and Brunauer-Emmett-Teller surface area measurement and their catalytic activity toward the hydrodechlorination of trichloroethylene (TCE) in aqueous media was examined using homogeneous and heterogeneous catalyst systems, respectively. The unsupported Pd nanoparticles showed considerable activity toward the degradation of TCE, as demonstrated by the reaction kinetics. Although the supported Pd nanoparticle catalysts had a lower catalytic activity than the unsupported particles that were homogeneously dispersed in the aqueous solutions, the supported catalysts retained sufficient activity toward the degradation of TCE. In addition, the use of the hydrophilic Al(2)O(3) support material induced a mass transfer resistance to TCE that affected the initial hydrodechlorination rate. This paper demonstrates that supported Pd catalysts can be applied to the heterogeneous catalytic hydrodechlorination of TCE.


Assuntos
Carboximetilcelulose Sódica/química , Poluentes Ambientais/química , Recuperação e Remediação Ambiental/métodos , Nanopartículas/química , Paládio/química , Tricloroetileno/química , Catálise , Poluentes Ambientais/isolamento & purificação , Química Verde/métodos , Halogenação , Nanopartículas/ultraestrutura , Nanotecnologia/métodos , Difração de Pó , Tricloroetileno/isolamento & purificação , Difração de Raios X
2.
Environ Sci Technol ; 41(10): 3475-80, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17547166

RESUMO

Determination and classification of quartz in coal fly ash (CFA) is a subject of interest because of the adverse health effects caused by inhalation of crystalline silica. Workers with prolonged exposure to this carcinogen can develop respiratory diseases over time. This obviously may include utility plant workers involved in the handling, loading, and hauling of CFA. In this investigation, computer-controlled scanning electron microscopy (CCSEM) and X-ray diffraction (XRD) were used to investigate Si-rich phases in CFA to develop a better approach for the determination of respirable quartz. Three CFA samples from utility boilers and a NIST standard CFA sample were investigated. The XRD measurements indicated that the four samples contained from 7.0 to 16.0 wt.% of quartz. The CCSEM measurements utilized both particle size distributions and a particle shape parameter, circularity, to classify the Si-rich phases in these ashes as either crystalline or amorphous (glass). The results indicated that the amount of free, respirable, quartz in these CFA samples ranged from only 0.1-1.0 vol % and showed little correlation with the XRD results for the bulk ash. These results are significant in view of the factthat XRD is the traditional method of measuring crystalline silica in dust collected from workplace atmospheres.


Assuntos
Carbono/química , Carvão Mineral/análise , Processamento de Imagem Assistida por Computador , Material Particulado/química , Quartzo/análise , Carbono/análise , Cinza de Carvão , Análise dos Mínimos Quadrados , Metais/análise , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Material Particulado/análise , Difração de Raios X
3.
Environ Sci Technol ; 39(22): 8865-76, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16323788

RESUMO

Aged and weathered chromated copper arsenate (CCA) treated wood was burned in an open burn research facility to characterize the air emissions and residual ash. The objectives were to simulate, to the extent possible, the combustion of such waste wood as might occur in an open field or someone's backyard; to characterize the composition and particle size distribution (PSD) of the emitted fly ash; to determine the partitioning of arsenic, chromium, and copper between the fly ash and residual ash; and to examine the speciation of the CCA elements. This work reports preliminary air emission concentrations and estimated emission factors for total particulate matter, arsenic (As), chromium (Cr), copper (Cu), and polychlorinated dibenzodioxins/dibenzofurans (PCDD/F) totals and toxic equivalents (TEQs). The partitioning of As, Cr, and Cu between the emitted fly ash and residual ash is examined and thermochemical predictions from the literature are used to explain the observed behavior. Results indicate a unimodal fly ash PSD between 0.1 and 1.0 microm diameter. In addition to a large carbonaceous component, between 11 and 14% of the As present in the burned CCA treated wood was emitted with the air emissions, with the remainder present in the residual ash. In contrast, less than 1% of both the Cr and Cu present in the wood was emitted with the air emissions. PCDD/F levels were unremarkable, averaging 1.7 ng TEQ/kg of treated wood burned, a value typical for wood combustion. Scanning electron microscopy (SEM) was unable to resolve inorganic particles consisting of Cu, Cr, or As in the wood samples, but X-ray absorption fine structure (XAFS) spectroscopy confirmed that the oxidation states of the CCA elements in the wood were Cu2+, Cr3+, and As5+. SEM examination of the fly ash samples revealed some inorganic microcrystals within the mostly carbonaceous fly ash, while XAFS spectroscopy of the same samples showed that the oxidation states after combustion were mixed Cu+ and Cu2+, Cr3+, and mixed As3+ and As5+. Estimates of the ratios of the mixed oxidation states based on the XAFS spectra were As3+/(total As) = 0.8-0.9 and Cu+/(total Cu) = 0.65-0.7. The Cu and Cr present in the fly ash were determined to coexist predominantly in the two oxide phases CuCrO2 and CuCr2O4. These results indicate that the open burning of CCA-treated wood can lead to significant air emissions of the more toxic trivalent form of As in particle sizes that are most respirable.


Assuntos
Poluentes Atmosféricos/análise , Arseniatos , Arsênio/análise , Benzofuranos/análise , Cromo/análise , Cobre/análise , Incineração , Dibenzodioxinas Policloradas/análogos & derivados , Madeira , Conservação dos Recursos Naturais , Dibenzofuranos Policlorados , Dibenzodioxinas Policloradas/análise , Eliminação de Resíduos , Poluentes do Solo/análise
4.
Environ Sci Technol ; 39(4): 1144-51, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15773488

RESUMO

Ultrafine (<100 nm) ash particles in three coal fly ashes (CFA) produced by the combustion of three U.S. coals have been examined by high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), and electron diffraction. These ultrafine particles, either as primary ash particles derived directly from coal minerals or as secondary products of decomposition and vaporization-condensation processes, show quite different morphologies, compositions, and microstructures as compared to particles in coarser, micrometer-size fractions previously examined by CCSEM. An eastern U.S. bituminous CFA sample shows abundant discrete crystalline particles rich in Fe, Ti, and Al in its ultrafine ash fraction, and crystalline phases down to 10 nm size have been identified. Western U.S. low-rank CFA samples contain considerable amounts of alkaline-earth element aggregates in the form of phosphates, silicates, and sulfates and mixed species. Most of them show crystalline or crystalline plus amorphous characteristics. All three ultrafine samples also exhibit carbonaceous particles in the form of soot aggregates with primary particle size typically between 20 and 50 nm. In the western low-rank ultrafine CFAs, these carbonaceous soot particles were typically mixed or coated with multi-element inorganic species.


Assuntos
Poluentes Atmosféricos/análise , Carbono/análise , Coloides/análise , Microscopia Eletrônica de Transmissão/métodos , Silicones/análise , Carvão Mineral , Cinza de Carvão , Tamanho da Partícula , Material Particulado
5.
Environ Sci Technol ; 38(24): 6553-60, 2004 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-15669312

RESUMO

Atmospheric emissions from combustion of residual oils often consist of carbonaceous material and metal compounds, both of which are of concern for health and environmental issues. In this study, particulate matter fractions with aerodynamic diameters nominally less than 2.5 microm (PM2.5) in two residual oil fly ash (ROFA) samples generated from combustion experiments were investigated by analytical transmission electron microscopy (TEM) techniques, including energy-dispersive X-ray spectroscopy, selected area electron diffraction (SAED), high-resolution TEM, and electron energy loss spectroscopy (EELS). Carbonaceous particles, which dominate both samples, exist in two distinctive forms: as soot aggregates with spherical primary particles of size 10-80 nm that exhibit a concentric arrangement of graphitic layers around the particle center and as larger spherical or irregular-shaped porous residual char particles of size 1-20 microm that usually have anisotropic microtextures and contain organic sulfur species. Such carbon-rich particles were often observed to be coated with inorganic species, notably transition metals (V, Ni, Fe, Zn) in the form of sulfates, oxides, vanadates, and phosphates. In this respect, they therefore differ from similar carbonaceous particles generated in combustion of diesel fuels that lack significant inorganic species. Crystalline phases of vanadium, nickel, and iron oxides and multi-element oxides were identified by the SAED technique. The valence state of V in some V-rich oxide particles probed by EELS was found to vary from +2 to +5. Individual transition metal sulfate, oxide, and phosphate particles are typically compositionally complex, containing multiple metallic elements. These microcharacteristics of individual PM2.5 particles revealed by electron microscopy techniques should be important parameters to include in future toxicological investigations of ROFA PM.


Assuntos
Poluentes Atmosféricos/análise , Carbono/química , Carvão Mineral , Cinza de Carvão , Monitoramento Ambiental , Incineração , Resíduos Industriais , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Material Particulado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...