Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(12)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38530006

RESUMO

Despite the potential use of polyelectrolyte multilayers for biomedical, separation, and energy applications, their dynamic properties are not sufficiently understood. In this work, center-of-mass diffusion of a weak polyacid-poly(methacrylic acid) (PMAA) of linear and 8-arm architecture (L-PMAA and 8-PMAA, respectively) and matched molecular weight-was studied in layer-by-layer (LbL) assemblies with poly(diallyldimethylammonium) chloride (PDADMAC) of varied molecular weight. The film deposition at low-salt, acidic conditions when PMAA was only partially ionized yielded thicker, more diffused layers with shorter PDADMAC chains, and bilayer thickness decreased for multilayers constructed with longer PDADMAC. The molecular architecture of PMAA had a weak effect on film growth, with bilayer thickness being ∼20% larger for L-PMAA for the films constructed with the shortest PDADMAC (35 kDa) and identical film growth for L-PMAA and 8-PMAA with the longest PDADMAC (300 kDa). The exposure of the multilayer films to 0.2M NaCl triggered a reduction in PMAA ionization and significant lateral diffusivity of fluorescently labeled PMAA molecules (PMAA*), with diffusion coefficients D ranging from 10-13 to 10-12 cm2/s, as determined by the fluorescence recovery after photobleaching technique. For all the films, polymer mobility was higher for star polyacids as compared to their linear counterparts, and the dependence of PMAA diffusion coefficient D on PDADMAC molecular weight (D ∼ M-n) was relatively weak (n < 0.6). However, 8-PMAA demonstrated an approximately doubled power exponent compared to the L-PMAA chains, suggesting a stronger effect of the molecular connectivity of the partner polycation molecules on the diffusion of star polyelectrolytes.

2.
Macromolecules ; 56(14): 5434-5445, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38357536

RESUMO

This study explores the effect of salt on the diffusivity of polyelectrolytes of varied molecular architecture in layer-by-layer (LbL) films in directions parallel and perpendicular to the substrate using fluorescence recovery after photobleaching (FRAP) and neutron reflectivity (NR) techniques, respectively. A family of linear, 4-arm, 6-arm, and 8-arm poly(methacrylic acids) (LPMAA, 4PMAA, 6PMAA, and 8PMAA, respectively) of matched molecular weights were synthesized using atom transfer radical polymerization and assembled with a linear polycation, poly[2-(trimethylammonium)ethyl methacrylate chloride] (QPC). NR studies involving deuterated QPC revealed ∼10-fold higher polycation mobility for the 8PMAA/QPC system compared to all-linear LbL films upon exposure to 0.25 M NaCl solutions at pH 6. FRAP experiments showed, however, that lateral diffusion of star PMAAs was lower than LPMAA at NaCl concentrations below ∼0.22 M NaCl, with a crossover to higher mobility of star polymers in more concentrated salt solutions. The stronger response of diffusion of star PMAA to salt is discussed in the context of several theories previously suggested for diffusivity of polyelectrolyte chains in multilayer films and coacervates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...