Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 53(15): 8925-8937, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31313910

RESUMO

This study presents land-use regression (LUR) models for submicron particulate matter (PM1) components from an urban area. Models are presented for mass concentrations of inorganic species (SO4, NO3, NH4), organic aerosol (OA) factors, and total PM1. OA is source-apportioned using positive matrix factorization (PMF) of data collected from aerosol mass spectrometry deployed on a mobile laboratory. PMF yielded a three-factor solution: cooking OA (COA), hydrocarbon-like OA (HOA), and less-oxidized oxygenated OA (LO-OOA). This study represents the first time that LUR has been applied to source-resolved OA factors. We sampled a roughly 20 km2 area of West Oakland, California, USA, over 1 month (mid-July to mid-August, 2017). The road network of the sampling domain was comprehensively sampled each day using a randomized driving route to minimize temporal and spatial bias. Mobile measurements were aggregated both spatially and temporally for use as discrete spatial observations for LUR model building. LUR model performance was highest for those species with more spatial variability (primary OA factors: COA R2 = 0.80, HOA R2 = 0.67) and lowest for secondary inorganic species (SO4 R2 = 0.47, NH4 R2 = 0.43) that were more spatially homogeneous. Notably, the stepwise selective LUR algorithm largely selected predictors for primary OA factors that correspond to the associated land-use categories (e.g., cooking land-use variables were selected in cooking-related PM models). This finding appears to be robust, as we demonstrate the predictive link between land-use variables and the corresponding source-resolved PM1 components through a subsampling analysis.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis , California , Monitoramento Ambiental , Material Particulado
2.
Environ Sci Technol ; 52(16): 9285-9294, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30070466

RESUMO

Organic aerosol (OA) is a major component of fine particulate matter (PM2.5) in urban environments. We performed in-motion ambient sampling from a mobile platform with an aerosol mass spectrometer (AMS) to investigate the spatial variability and sources of OA concentrations in Pittsburgh, Pennsylvania, a midsize, largely postindustrial American city. To characterize the relative importance of cooking and traffic sources, we sampled in some of the most populated areas (∼18 km2) in and around Pittsburgh during afternoon rush hour and evening mealtime, including congested highways, major local roads, areas with high densities of restaurants, and urban background locations. We found greatly elevated OA concentrations (10s of µg m-3) in the vicinity of numerous individual restaurants and commercial districts containing multiple restaurants. The AMS mass spectral information indicates that majority of the high concentration plumes (71%) were from cooking sources. Areas containing both busy roads and restaurants had systematically higher OA concentrations than areas with only busy roads and urban background locations. Elevated OA concentrations were measured hundreds of meters downwind of some restaurants, indicating that these sources can influence air quality on neighborhood scales. Approximately 20% of the population (∼250 000 people) in the Pittsburgh area lives within 200 m of a restaurant; therefore, restaurant emissions are potentially an important source of outdoor PM exposures for this large population.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis , Cidades , Culinária , Monitoramento Ambiental , Material Particulado , Pennsylvania , Restaurantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...