Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847794

RESUMO

Traditional Li-ion intercalation chemistry into graphite anodes exclusively utilizes the cointercalation-free or cointercalation mechanism. The latter mechanism is based on ternary graphite intercalation compounds (t-GICs), where glyme solvents were explored and proved to deliver unsatisfactory cyclability in LIBs. Herein, we report a novel intercalation mechanism, that is, in situ synthesis of t-GIC in the tetrahydrofuran (THF) electrolyte via a spontaneous, controllable reaction between binary-GIC (b-GIC) and free THF molecules during initial graphite lithiation. The spontaneous transformation from b-GIC to t-GIC, which is different from conventional cointercalation chemistry, is characterized and quantified via operando synchrotron X-ray and electrochemical analyses. The resulting t-GIC chemistry obviates the necessity for complete Li-ion desolvation, facilitating rapid kinetics and synchronous charge/discharge of graphite particles, even under high current densities. Consequently, the graphite anode demonstrates unprecedented fast charging (1 min), dendrite-free low-temperature performance, and ultralong lifetimes exceeding 10 000 cycles. Full cells coupled with a layered cathode display remarkable cycling stability upon a 15 min charging and excellent rate capability even at -40 °C. Furthermore, our chemical strategies are shown to extend beyond Li-ion batteries to encompass Na-ion and K-ion batteries, underscoring their broad applicability. Our work contributes to the advancement of graphite intercalation chemistry and presents a low-cost, adaptable approach for achieving fast-charging and low-temperature batteries.

2.
Extreme Mech Lett ; 612023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37304308

RESUMO

Subcutaneous (SQ) injection is an effective delivery route for various biologics, including proteins, antibodies, and vaccines. However, pain and discomfort induced during SQ injection pose a notable challenge for the broader and routine use of biologics. Understanding the underlying mechanism and quantification of injection-induced pain and discomfort (IPD) are urgently needed. A crucial knowledge gap is what changes in the skin tissue microenvironment are induced by the SQ injection, which may ultimately cause the IPD. In this study, thus, a hypothesis is postulated that the injection of biologics solution through the skin tissue microenvironment induces spatiotemporal mechanical changes. Specifically, the injection leads to tissue swelling and subsequent increases in the interstitial fluid pressure (IFP) and matrix stress around the injection site, which ultimately causes the IPD. To test this hypothesis, an engineered SQ injection model is developed capable of measuring tissue swelling during SQ injection. The injection model consists of a skin equivalent with quantum dot-labeled fibroblasts, which enables the measurement of injection-induced spatiotemporal deformation. The IFP and matrix stress are further estimated by computational analysis approximating the skin equivalent as a nonlinear poroelastic material. The result confirms significant injection-induced tissue swelling and increases in IFP and matrix stress. The extent of deformation is correlated to the injection rate. The results also suggest that the size of biologics particulates significantly affects the pattern and extent of the deformation. The results are further discussed to propose a quantitative understanding of the injection-induced changes in the skin microenvironment.

3.
Chem Rev ; 122(15): 13043-13107, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35839290

RESUMO

Chemomechanics is an old subject, yet its importance has been revived in rechargeable batteries where the mechanical energy and damage associated with redox reactions can significantly affect both the thermodynamics and rates of key electrochemical processes. Thanks to the push for clean energy and advances in characterization capabilities, significant research efforts in the last two decades have brought about a leap forward in understanding the intricate chemomechanical interactions regulating battery performance. Going forward, it is necessary to consolidate scattered ideas in the literature into a structured framework for future efforts across multidisciplinary fields. This review sets out to distill and structure what the authors consider to be significant recent developments on the study of chemomechanics of rechargeable batteries in a concise and accessible format to the audiences of different backgrounds in electrochemistry, materials, and mechanics. Importantly, we review the significance of chemomechanics in the context of battery performance, as well as its mechanistic understanding by combining electrochemical, materials, and mechanical perspectives. We discuss the coupling between the elements of electrochemistry and mechanics, key experimental and modeling tools from the small to large scales, and design considerations. Lastly, we provide our perspective on ongoing challenges and opportunities ranging from quantifying mechanical degradation in batteries to manufacturing battery materials and developing cyclic protocols to improve the mechanical resilience.


Assuntos
Fontes de Energia Elétrica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...