Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38861438

RESUMO

Early diagnosis of Alzheimer's disease (AD) is crucial for its prevention, and hippocampal atrophy is a significant lesion for early diagnosis. The current DL-based AD diagnosis methods only focus on either AD classification or hippocampus segmentation independently, neglecting the correlation between the two tasks and lacking pathological interpretability. To address this issue, we propose a Reliable Hippo-guided Learning model for Alzheimer's Disease diagnosis (RLAD), which employs multi-task learning for AD classification as a main task supplemented by hippocampus segmentation. More specifically, our model consists of 1) a hybrid shared features encoder that encodes local and global information in MRI to enhance the model's ability to learn discriminative features; 2) Task Specific Decoders to accomplish AD classification and hippocampus segmentation; and 3) Task Coordination module to correlate the two tasks and guide the classification task to focus on the hippocampus area. Our proposed RLAD model is evaluated on MRI scans of 1631 subjects from three independent datasets, including ADNI-1, ADNI-2, and HarP. Our extensive experimental results demonstrate that the proposed model significantly improves the performance of AD classification and hippocampus segmentation with strong generalization capabilities. Our implementation and model are available at https://github.com/LeoLjl/Explainable-Alzheimer-s-Disease-Diagnosis.

2.
Sensors (Basel) ; 24(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732910

RESUMO

IoT has seen remarkable growth, particularly in healthcare, leading to the rise of IoMT. IoMT integrates medical devices for real-time data analysis and transmission but faces challenges in data security and interoperability. This research identifies a significant gap in the existing literature regarding a comprehensive ontology for vulnerabilities in medical IoT devices. This paper proposes a fundamental domain ontology named MIoT (Medical Internet of Things) ontology, focusing on cybersecurity in IoMT (Internet of Medical Things), particularly in remote patient monitoring settings. This research will refer to similar-looking acronyms, IoMT and MIoT ontology. It is important to distinguish between the two. IoMT is a collection of various medical devices and their applications within the research domain. On the other hand, MIoT ontology refers to the proposed ontology that defines various concepts, roles, and individuals. MIoT ontology utilizes the knowledge engineering methodology outlined in Ontology Development 101, along with the structured life cycle, and establishes semantic interoperability among medical devices to secure IoMT assets from vulnerabilities and cyberattacks. By defining key concepts and relationships, it becomes easier to understand and analyze the complex network of information within the IoMT. The MIoT ontology captures essential key terms and security-related entities for future extensions. A conceptual model is derived from the MIoT ontology and validated through a case study. Furthermore, this paper outlines a roadmap for future research, highlighting potential impacts on security automation in healthcare applications.


Assuntos
Segurança Computacional , Internet das Coisas , Humanos , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Telemedicina/métodos
3.
Opt Express ; 32(3): 3835-3851, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297596

RESUMO

High-level detection of weak targets under bright light has always been an important yet challenging task. In this paper, a method of effectively fusing intensity and polarization information has been proposed to tackle this issue. Specifically, an attention-guided dual-discriminator generative adversarial network (GAN) has been designed for image fusion of these two sources, in which the fusion results can maintain rich background information in intensity images while significantly completing target information from polarization images. The framework consists of a generator and two discriminators, which retain the texture and salient information as much as possible from the source images. Furthermore, attention mechanism is introduced to focus on contextual semantic information and enhance long-term dependency. For preserving salient information, a suitable loss function has been introduced to constrain the pixel-level distribution between the result and the original image. Moreover, the real scene dataset of weak targets under bright light has been built and the effects of fusion between polarization and intensity information on different weak targets have been investigated and discussed. The results demonstrate that the proposed method outperforms other methods both in subjective evaluations and objective indexes, which prove the effectiveness of achieving accurate detection of weak targets in bright light background.

4.
Sensors (Basel) ; 24(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339661

RESUMO

Vortex beams carrying orbital angular momentum (OAM) provide a new degree of freedom for light waves in addition to the traditional degrees of freedom, such as intensity, phase, frequency, time, and polarization. Due to the theoretically unlimited orthogonal states, the physical dimension of OAM is capable of addressing the problem of low information capacity. With the advancement of the OAM optical communication technology, OAM router devices (OAM-RDs) have played a key role in significantly improving the flexibility and practicability of communication systems. In this review, major breakthroughs in the OAM-RDs are summarized, and the latest technological standing is examined. Additionally, a detailed account of the recent works published on techniques related to the OAM-RDs has been categorized into five areas: channel multicasting, channel switching, channel filtering, channel hopping, and channel adding/extracting. Meanwhile, the principles, research methods, advantages, and disadvantages are discussed and summarized in depth while analyzing the future development trends and prospects of the OAM-RDs.

5.
Opt Express ; 31(23): 38958-38969, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38017986

RESUMO

Orbital angular momentum (OAM) has recently obtained tremendous research interest in free-space optical communications (FSO). During signal transmission within the free-space link, atmospheric turbulence (AT) poses a significant challenge as it diminishes the signal strength and introduce intermodal crosstalk, significantly reducing OAM mode detection accuracy. This issue directly impacts the performance of OAM-based communication systems and leads to a reduction in received information. To address this critical bottleneck of low mode recognition accuracy in OAM-based FSO-communications, a deep learning method based on vision transformers (ViT) is proposed for what we believe is for the first time. Designed carefully by numerous experts, the advanced self-attention mechanism of ViT captures more global information from the input image. To train the model, pretraining on a large dataset, named IMAGENET is conducted. Subsequently, we performed fine-tuning on our specific dataset, consisting of OAM beams that have undergone varying AT strengths. The computer simulation shows that based on ViT method, the multiple OAM modes can be recognized with a high accuracy (nearly 100%) under weak-to-moderate turbulence and with almost 98% accuracy even under long transmission distance with strong turbulence (C N2=1×10-14). Our findings highlight that leveraging ViT enables robust detection of complex OAM beams, mitigating the adverse effects caused by atmospheric turbulence.

6.
Neural Comput Appl ; 34(8): 6547-6567, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35068703

RESUMO

In the past decade, deep learning (DL) has achieved unprecedented success in numerous fields, such as computer vision and healthcare. Particularly, DL is experiencing an increasing development in advanced medical image analysis applications in terms of segmentation, classification, detection, and other tasks. On the one hand, tremendous needs that leverage DL's power for medical image analysis arise from the research community of a medical, clinical, and informatics background to share their knowledge, skills, and experience jointly. On the other hand, barriers between disciplines are on the road for them, often hampering a full and efficient collaboration. To this end, we propose our novel open-source platform, i.e., MEDAS-the MEDical open-source platform As Service. To the best of our knowledge, MEDAS is the first open-source platform providing collaborative and interactive services for researchers from a medical background using DL-related toolkits easily and for scientists or engineers from informatics modeling faster. Based on tools and utilities from the idea of RINV (Rapid Implementation aNd Verification), our proposed platform implements tools in pre-processing, post-processing, augmentation, visualization, and other phases needed in medical image analysis. Five tasks, concerning lung, liver, brain, chest, and pathology, are validated and demonstrated to be efficiently realizable by using MEDAS. MEDAS is available at http://medas.bnc.org.cn/.

7.
Nanomaterials (Basel) ; 11(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34443979

RESUMO

Application of MXene materials in perovskite solar cells (PSCs) has attracted considerable attention owing to their supreme electrical conductivity, excellent carrier mobility, adjustable surface functional groups, excellent transparency and superior mechanical properties. This article reviews the progress made so far in using Ti3C2Tx MXene materials in the building blocks of perovskite solar cells such as electrodes, hole transport layer (HTL), electron transport layer (ETL) and perovskite photoactive layer. Moreover, we provide an outlook on the exciting opportunities this recently developed field offers, and the challenges faced in effectively incorporating MXene materials in the building blocks of PSCs for better operational stability and enhanced performance.

8.
IEEE Trans Med Imaging ; 40(12): 3531-3542, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34133275

RESUMO

Liver lesion segmentation is an essential process to assist doctors in hepatocellular carcinoma diagnosis and treatment planning. Multi-modal positron emission tomography and computed tomography (PET-CT) scans are widely utilized due to their complementary feature information for this purpose. However, current methods ignore the interaction of information across the two modalities during feature extraction, omit the co-learning of the feature maps of different resolutions, and do not ensure that shallow and deep features complement each others sufficiently. In this paper, our proposed model can achieve feature interaction across multi-modal channels by sharing the down-sampling blocks between two encoding branches to eliminate misleading features. Furthermore, we combine feature maps of different resolutions to derive spatially varying fusion maps and enhance the lesions information. In addition, we introduce a similarity loss function for consistency constraint in case that predictions of separated refactoring branches for the same regions vary a lot. We evaluate our model for liver tumor segmentation using a PET-CT scans dataset, compare our method with the baseline techniques for multi-modal (multi-branches, multi-channels and cascaded networks) and then demonstrate that our method has a significantly higher accuracy ( ) than the baseline models.


Assuntos
Neoplasias Hepáticas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Processamento de Imagem Assistida por Computador , Neoplasias Hepáticas/diagnóstico por imagem
9.
Sensors (Basel) ; 21(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925845

RESUMO

Technologies and services towards smart-vehicles and Intelligent-Transportation-Systems (ITS), continues to revolutionize many aspects of human life. This paper presents a detailed survey of current techniques and advancements in Automatic-Number-Plate-Recognition (ANPR) systems, with a comprehensive performance comparison of various real-time tested and simulated algorithms, including those involving computer vision (CV). ANPR technology has the ability to detect and recognize vehicles by their number-plates using recognition techniques. Even with the best algorithms, a successful ANPR system deployment may require additional hardware to maximize its accuracy. The number plate condition, non-standardized formats, complex scenes, camera quality, camera mount position, tolerance to distortion, motion-blur, contrast problems, reflections, processing and memory limitations, environmental conditions, indoor/outdoor or day/night shots, software-tools or other hardware-based constraint may undermine its performance. This inconsistency, challenging environments and other complexities make ANPR an interesting field for researchers. The Internet-of-Things is beginning to shape future of many industries and is paving new ways for ITS. ANPR can be well utilized by integrating with RFID-systems, GPS, Android platforms and other similar technologies. Deep-Learning techniques are widely utilized in CV field for better detection rates. This research aims to advance the state-of-knowledge in ITS (ANPR) built on CV algorithms; by citing relevant prior work, analyzing and presenting a survey of extraction, segmentation and recognition techniques whilst providing guidelines on future trends in this area.


Assuntos
Algoritmos , Software , Humanos , Movimento (Física)
10.
Nanomaterials (Basel) ; 11(1)2020 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-33375498

RESUMO

Due to the tremendous increase in power conversion efficiency (PCE) of organic-inorganic perovskite solar cells (PSCs), this technology has attracted much attention. Despite being the fastest-growing photovoltaic technology to date, bottlenecks such as current density-voltage (J-V) hysteresis have significantly limited further development. Current density measurements performed with different sweep scan speeds exhibit hysteresis and the photovoltaic parameters extracted from the current density-voltage measurements for both scan directions become questionable. A current density-voltage measurement protocol needs to be established which can be used to achieve reproducible results and to compare devices made in different laboratories. In this work, we report a hysteresis analysis of a hole-transport-material-free (HTM-free) carbon-counter-electrode-based PSC conducted by current density-voltage and impedance spectra measurements. The effect of sweep scan direction and time delay was examined on the J-V characteristics of the device. The hysteresis was observed to be strongly sweep scan direction and time delay dependent and decreased as the delay increased. The J-V analysis conducted in the reverse sweep scan direction at a lower sweep time delay of 0.2 s revealed very large increases in the short circuit current density and the power conversion efficiency of 57.7% and 56.1%, respectively, compared with the values obtained during the forward scan under the same conditions. Impedance spectroscopy (IS) investigations were carried out and the effects of sweep scan speed, time delay, and frequency were analyzed. The hysteresis was observed to be strongly sweep scan direction, sweep time delay, and frequency dependent. The correlation between J-V and IS data is provided. The wealth of photovoltaic and impendence spectroscopic data reported in this work on the hysteresis study of the HTM-free PSC may help in establishing a current density-voltage measurement protocol, identifying components and interfaces causing the hysteresis, and modeling of PSCs, eventually benefiting device performance and long-term stability.

11.
IEEE Trans Med Imaging ; 39(9): 2782-2793, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32091995

RESUMO

Multi-organ segmentation is a challenging task due to the label imbalance and structural differences between different organs. In this work, we propose an efficient cascaded V-Net model to improve the performance of multi-organ segmentation by establishing dense Block Level Skip Connections (BLSC) across cascaded V-Net. Our model can take full advantage of features from the first stage network and make the cascaded structure more efficient. We also combine stacked small and large kernels with an inception-like structure to help our model to learn more patterns, which produces superior results for multi-organ segmentation. In addition, some small organs are commonly occluded by large organs and have unclear boundaries with other surrounding tissues, which makes them hard to be segmented. We therefore first locate the small organs through a multi-class network and crop them randomly with the surrounding region, then segment them with a single-class network. We evaluated our model on SegTHOR 2019 challenge unseen testing set and Multi-Atlas Labeling Beyond the Cranial Vault challenge validation set. Our model has achieved an average dice score gain of 1.62 percents and 3.90 percents compared to traditional cascaded networks on these two datasets, respectively. For hard-to-segment small organs, such as the esophagus in SegTHOR 2019 challenge, our technique has achieved a gain of 5.63 percents on dice score, and four organs in Multi-Atlas Labeling Beyond the Cranial Vault challenge have achieved a gain of 5.27 percents on average dice score.


Assuntos
Algoritmos , Redes Neurais de Computação , Tomografia Computadorizada por Raios X
12.
Front Digit Health ; 2: 609349, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34713070

RESUMO

Lung cancer is a life-threatening disease and its diagnosis is of great significance. Data scarcity and unavailability of datasets is a major bottleneck in lung cancer research. In this paper, we introduce a dataset of pulmonary lesions for designing the computer-aided diagnosis (CAD) systems. The dataset has fine contour annotations and nine attribute annotations. We define the structure of the dataset in detail, and then discuss the relationship of the attributes and pathology, and the correlation between the nine attributes with the chi-square test. To demonstrate the contribution of our dataset to computer-aided system design, we define four tasks that can be developed using our dataset. Then, we use our dataset to model multi-attribute classification tasks. We discuss the performance in 2D, 2.5D, and 3D input modes of the classification model. To improve performance, we introduce two attention mechanisms and verify the principles of the attention mechanisms through visualization. Experimental results show the relationship between different models and different levels of attributes.

13.
Artigo em Inglês | MEDLINE | ID: mdl-31265408

RESUMO

Convolutional long short-term memory (ConvLSTM) networks have been widely used for action/gesture recognition, and different attention mechanisms have also been embedded into ConvLSTM networks. This paper explores the redundancy of spatial convolutions and the effects of the attention mechanism in ConvLSTM, based on our previous gesture recognition architectures that combine the 3-D convolutional neural network (CNN) and ConvLSTM. Depthwise separable, group, and shuffle convolutions are used to replace the convolutional structures in ConvLSTM for the redundancy analysis. In addition, four ConvLSTM variants are derived for attention analysis: 1) by removing the convolutional structures of the three gates in ConvLSTM; 2) by applying the attention mechanism on the ConvLSTM input; and 3) by reconstructing the input and 4) output gates with the modified channelwise attention mechanism. Evaluation results demonstrate that the spatial convolutions in the three gates scarcely contribute to the spatiotemporal feature fusion and that the attention mechanisms embedded into the input and output gates cannot improve the feature fusion. In other words, ConvLSTM mainly contributes to the temporal fusion along with the recurrent steps to learn long-term spatiotemporal features when taking spatial or spatiotemporal features as input. A new LSTM variant is derived on this basis in which the convolutional structures are embedded only into the input-to-state transition of LSTM. The code of the LSTM variants is publicly available.\footnotehttps://github.com/GuangmingZhu/ConvLSTMForGR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...